Skip to main content

Advertisement

Log in

Nanomaterials in aquatic products and aquatic systems, and its safety aspects

  • Review Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Nanotechnological tools are widely used in aquatic health management, post-harvest production, and water treatment. The nanotechnology intervention has also become inevitable for enhancing the quality and safety of aquatic food products. Nano-tagging, nano-coding, and nano biosensors ensure freshness by tracking/ monitoring the quality of processed aquaculture products, and are discussed in this review. Detailed in-vitro and in-vivo studies are required to assure the safe usage of nanomaterial. This review article summarizes various applications of nanotechnology in aquaculture and the aquatic food processing, toxicity of nanomaterials, their effects on human health, the regulations established for safe usage of nanomaterials, and also highlights the importance of toxicological study. The above information is useful for further research on nanomaterials and for the safe and effective usage in aquaculture/aquatic food product processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

These research data are not shared, all data generated or analyzed during this study are included in this published article.

Abbreviations

DNA:

Deoxy nucleic acid

Nm:

Nanometer

PLGA:

Poly D, L-lactic-co-glycolic acid

TiO2 :

Titanium dioxide

Ag:

Silver

Al2O3 :

Aluminium oxide

Fe3O4 :

Iron oxide

CeO2 :

Cerium IV oxide

MgO:

Magnesium oxide

ZrO2:

Zirconium dioxide

CuO:

Copper II oxide

ZnO:

Zinc oxide

LHRH:

Luteinizing hormone releasing hormone

RFID:

Radio frequency identification

OECD:

Organization for economic co-operation and development

LC50 :

Lethal concentration 50%

ROS:

Reactive oxygen species

FDA:

Food drug administration

FSA:

Food standards agency

IFST:

Institute of food science and technology

MSDS:

Material safety data sheets

References

  • Abdel-Ghany HM, Salem MES (2020) Effects of dietary chitosan supplementation on farmed fish; a review. Rev Aquac 12(1):438–452

    Article  Google Scholar 

  • Abdel-Tawwab M, Razek NA, Abdel-Rahman AM (2019) Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol 88:254–258. https://doi.org/10.1016/j.fsi.2019.02.063

    Article  CAS  Google Scholar 

  • Alboghbeish H, Khodanazary A (2019) The comparison of quality characteristics of refrigerated Carangoides coeruleopinnatus fillets with chitosan and nanochitosan coating. Turk J Fish Aquat Sci 19(11):957–967

    Article  Google Scholar 

  • Alishahi A (2015) Application of nanotechnology in marine-based products: a review. J Aquat Food Prod Technol 24(5):533–543

    Article  Google Scholar 

  • Alramadhan SA, Hammud HH (2021) Graphene nickel silica supported nanocomposites as an efficient purifier for water treatment. Appl Nanosci 11(2):273–291. https://doi.org/10.1007/s13204-020-01580-y

    Article  CAS  Google Scholar 

  • Anju T, Preetha R, Shunmugam R, Mane SR, Arockiaraj J, Kumaresana V (2016) Norbornene derived nanocarrier reduces isoniazid mediated liver toxicity: assessment in HepG2 cell line and Zebrafish model. Roy Soc Chem Advan 6(115):114927–114936

    CAS  Google Scholar 

  • Arun J, Gopinath KP, Sundar Rajan P, Felix V, Joselyn Monica M, Malolan R (2020) A conceptual review on microalgae biorefinery through thermochemical and biological pathways: Bio-circular approach on carbon capture and wastewater treatment. Bioresou Technol Rep 11(1):100477

    Google Scholar 

  • Arun R, Shruthy R, Preetha R, Sreejit V (2022) Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.132786

    Article  Google Scholar 

  • Ashraf M, Aklakur M, Sharma R, Ahmad Sh KM (2011) Nanotechnology as a novel tool in fisheries and aquaculture development: a review. Iran J Energy Environ 2(3):258–261

    Google Scholar 

  • Ayala-Zavala JF, González-Aguilar GA, Ansorena MR, Alvarez-Párrilla E, de la Rosa L (2014) Nanotechnology tools to achieve food safety. Pract Food Safety Contemp Issues Fut Direct 1:341–353. https://doi.org/10.1002/9781118474563.ch17

    Article  Google Scholar 

  • Azadbakht P, Pourzamani H, Bina Petroudy SJ, Bina B (2016) Removal of nitrate from aqueous solution using nanocrystalline cellulose. Int J Environ Health Eng 5:17

    Article  Google Scholar 

  • Bellmann S, Carlander S, Fasano D, Momcilovic A, Scimeca D, Waldman JA, Lefebvre DE et al (2015) Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdis Rev Nanomed Nanobiotechnol 7(5):609–622

    Article  CAS  Google Scholar 

  • Bengalli R, Gualtieri M, Capasso L, Urani C, Camatini M (2017) Impact of zinc oxide nanoparticles on an in vitro model of the human air-blood barrier. Toxicol Lett 279:22–32. https://doi.org/10.1016/j.toxlet.2017.07.877

    Article  CAS  Google Scholar 

  • Bernstein AS, Oken E, de Ferranti S, Lowry JA, Ahdoot S, Baum CR, Bole A, Byron LG, Landrigan PJ, Marcus SM, Pacheco SE (2019) Fish, shellfish, and children’s health: an assessment of benefits, risks, and sustainability. Pediatrics. https://doi.org/10.1542/peds.2019-0999

    Article  Google Scholar 

  • Biji KB, Ravishankar CN, Mohan CO, Gopal TS (2015) Smart packaging systems for food applications: a review. J Food Sci Technol 52(10):6125–6135

    Article  CAS  Google Scholar 

  • Can E, Kizak V, Kayim M, Can SS, Kutlu B, Ates M, Kocabas, et al (2011) Nanotechnological applications in aquaculture-seafood industries and adverse effects of nanoparticles on the environment. J Mater Sci Eng 5(1):605–609. https://doi.org/10.4194/1303-2712-v13_4_06

    Article  Google Scholar 

  • Chang CC, Hsu IK, Aykol M, Hung WH, Chen CC, Cronin SB (2010) A new lower limit for the ultimate breaking strain of carbon nanotubes. A.C.S. NANO 4:5095–5100. https://doi.org/10.1021/nn100946q

    Article  CAS  Google Scholar 

  • Chorianopoulos NG, Tsoukleris DS, Panagou EZ, Falaras P, Nychas GJ (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28(1):164–170. https://doi.org/10.1016/j.fm.2010.07.025

    Article  CAS  Google Scholar 

  • Chu YM, Bach QV (2020) Application of TiO 2 nanoparticle for solar photocatalytic oxidation system. Appl Nanosci 1:1–8

    Google Scholar 

  • Contado C, Mejia J, García OL, Piret JP, Dumortier E, Toussaint, et al (2016) Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the E.C. recommendation. Analyt Bioanalyt Chem 408(1):271–286

    Article  CAS  Google Scholar 

  • Dar AH, Rashid N, Majid I, Hussain S, Dar MA (2020) Nanotechnology interventions in aquaculture and seafood preservation. Crit Rev Food Sci Nutr 60(11):1912–1921. https://doi.org/10.1080/10408398.2019.1617232

    Article  CAS  Google Scholar 

  • Degger N, Tse ACK, Wu RSS (2015) Silver nanoparticles disrupt regulation of steroidogenesis in fishovarian cells. Aquat Toxicol 169:143–151. https://doi.org/10.1016/j.aquatox.2015.10.015

    Article  CAS  Google Scholar 

  • Dubey A, Goswami M, Yadav K, Chaudhary D (2015) Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line. PLoS ONE 10(5):e0127493. https://doi.org/10.1371/journal.pone.0127493

    Article  CAS  Google Scholar 

  • Fajardo C, Martinez-Rodriguez G, Blasco J, Miguel Mancera J, Thomas B, De Donato M (2022) Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. Aquac Fish 7(2):185–200. https://doi.org/10.1016/j.aaf.2021.12.006

    Article  Google Scholar 

  • Fathi M, Donsi F, McClements DJ (2018) Protein-based delivery systems for the nanoencapsulation of food ingredients. Comprehens Rev Food Sci Food Safety 17(4):920–936

    Article  Google Scholar 

  • Felix LC, Ortega VA, Ede JD, Goss GG (2013) Physicochemical characteristics of polymer-coated metal-oxide nanoparticles and their toxicological effects on zebrafish (Danio rerio) development. Environ Sci Technol 47(12):6589–6596. https://doi.org/10.1021/es401403p

    Article  CAS  Google Scholar 

  • Fernández et al (2014) Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture432:426-433. http://refhub.elsevier.com/S0044-8486(21)00993-5/rf0380

  • Ganguly P, Breen A, Pllai SC (2018) Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater Sci Eng 4(7):2237–2275. https://doi.org/10.1021/acsbiomaterials.8b00068

    Article  CAS  Google Scholar 

  • González-Fernández C, Baños FGD, Esteban MÁ, Cuesta A (2021) Functionalized nanoplastics (NPs) increase the toxicity of metals in fish cell lines. Int J Mol Sci 22(13):7141. https://doi.org/10.1002/tox.22692

    Article  CAS  Google Scholar 

  • Guan W et al (2016) Effects of UV-C treatment and cold storage on ergosterol and vitamin D2 contents in different parts of white and brown mushroom (Agaricus bisporus). Food Chem 210:129–134. https://doi.org/10.1016/j.foodchem.2016.04.023

    Article  CAS  Google Scholar 

  • Golden CD, Koehn JZ, Shepon A, Passarelli S, Free CM, Viana DF, Matthey H, Eurich JG, Gephart JA, Fluet-Chouinard E, Nyboer EA (2021) Aquatic foods to nourish nations. Nature 598(7880):315–320

    Article  CAS  Google Scholar 

  • Handy RD (2012) FSBI briefing paper: nanotechnology in fisheries and aquaculture. Fish Soc Brit Isles. https://doi.org/10.1006/fsim.1999.0251

    Article  Google Scholar 

  • Heerthana V, Preetha R (2019) Biosensors: a potential tool for quality assurance and food safety pertaining to biogenic amines/volatile amines formation in aquaculture systems/products. Rev Aquacult 11:220–233. https://doi.org/10.1111/raq.12236

    Article  Google Scholar 

  • Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brieger J et al (2015) Genotoxic effects of zinc oxide nanoparticles. Nanoscale 7(19):8931–8938. https://doi.org/10.1039/C5NR01167A

    Article  CAS  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Develop 35(2):369–400. https://doi.org/10.1007/s13593-014-0274-x

    Article  Google Scholar 

  • Hussein HA, Abdullah MA (2021) Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Appl Nanosci 1:1–26

    Google Scholar 

  • Jancy S, Shruthy R, Preetha R (2020) Fabrication of packaging film reinforced with cellulose nanoparticles synthesized from jack fruit non-edible part using response surface methodology. Int J Biol Macromol 142:63–72

    Article  CAS  Google Scholar 

  • Kamalii A, Ahilan B, Felix N, Kannan B, Prabu E (2018) Applications of nanotechnology in fisheries and aquaculture. J Aquacult Trop 33(3/4):111–117

    Google Scholar 

  • Kaur J, Khatri M, Puri S (2019) Toxicological evaluation of metal oxide nanoparticles and mixed exposures at low doses using zebra fish and THP1 cell line. Environment Toxicol 34(4):375–387

    Article  CAS  Google Scholar 

  • Khan I, Bahuguna A, Krishnan M, Shukla S, Lee H et al (2019) The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Sci Total Environ 679(1):365–377. https://doi.org/10.1016/j.scitotenv.2019.05.045

    Article  CAS  Google Scholar 

  • Khan KU, Zuberi A, Nazir S, Fernandes JBK, Jamil Z, Sarwar H (2016) Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile Tor putitora. Turkish J Zoology 40(5):704–712. https://doi.org/10.3906/zoo-1510-5

    Article  CAS  Google Scholar 

  • Khosravi-Katuli K, Prato E, Lofrano G et al (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24:17326–17346. https://doi.org/10.1007/s11356-017-9360-3

    Article  Google Scholar 

  • Kovrižnych JA, Sotníková R, Zeljenková D, Rollerová E, Szabová E, Wimmerová S (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages–a comparative study. Interdiscip Toxicol 6(2):67–73

    Article  Google Scholar 

  • Kumar PV, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaaviadiffusa plant extract and their anti-bacterial activity. Ind Crops Prod 52:562–566. https://doi.org/10.1016/j.indcrop.2013.10.050

    Article  CAS  Google Scholar 

  • Kuswandi B, Restyana A, Abdullah A, Heng LY, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25(1):184–189

    Article  CAS  Google Scholar 

  • Lala-Pritchard T, Johnstone G (2020) 2030 Research and Innovation Strategy: Aquatic Foods for Healthy People and Planet. https://hdl.handle.net/20.500.12348/4411

  • Li Q, Zhang M, Bhandari B, Yang C (2020) Shelf life extension of aquatic products by applying nanotechnology: a review. Crit Rev Food Sci Nutr 1(1):1–15

    Google Scholar 

  • Lung HM, Cheng YC, Chang YH, Huang HW, Yang BB, Wang CY (2015) Microbial decontamination of food by electron beam irradiation. Trends Food Sci Technol 44(1):66–78

    Article  CAS  Google Scholar 

  • Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, Gibson H, Albert CM, Gordon D, Copeland T, D’Agostino D (2019) Marine n− 3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med 380(1):23–32. https://doi.org/10.1056/NEJMoa1811403

    Article  CAS  Google Scholar 

  • Márquez JCM, Partida AH, del Carmen M, Dosta M, Mejía JC, Martínez JAB (2018) Silver nanoparticles applications (AgNPS) in aquaculture. Int J Fish Aquatic Studies 6(2):05–11

    Google Scholar 

  • McCracken C, Dutta PK, Waldman WJ (2016) Critical assessment of toxicological effects of ingested nanoparticles. Environ Sci Nano 3(2):256–282. https://doi.org/10.1039/C5EN00242G

    Article  CAS  Google Scholar 

  • Moges FD, Patel P, Parashar SKS, Das B (2020) Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture 519:734–770. https://doi.org/10.1016/j.aquaculture.2019.734770

    Article  Google Scholar 

  • Moges FD, Hamdi H, Al-Barty A, Zaid AA, Sundaray M, Parashar SKS, Gubale AG, Das B (2022) Effects of selenium nanoparticle on the growth performance and nutritional quality in Nile Tilapia, Oreochromis niloticus. PLOS ONE 17(6)e0268348. https://doi.org/10.1371/journal.pone.0268348

    Article  CAS  Google Scholar 

  • Murray AG (2013) Epidemiology of the spread of viral diseases under aquaculture. Curr Opin Virol 3:74–78. https://doi.org/10.1016/j.coviro.2012.11.002

    Article  Google Scholar 

  • Nasr-Eldahan S, Nabil-Adam A, Shreadah MA, Maher AM, El-Sayed Ali T (2021) A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. Aquac Int 29(4):1459–1480. https://doi.org/10.1007/s10499-021-00677-7

    Article  Google Scholar 

  • Ninawe AS, Hameed ASS, Selvin J (2016) Advancements in diagnosis and control measures of viral pathogens in aquaculture: an Indian perspective. Aquacult Int 25:251–264. https://doi.org/10.1007/s10499-016-0026-9

    Article  CAS  Google Scholar 

  • Nwaigwe U (2017) Fish preservation and processing. J Food 1:1–31. https://doi.org/10.1080/87559129.2020.1737708

    Article  Google Scholar 

  • Ogunkalu OA (2019) Utilization of nanotechnology in aquaculture and seafood sectors. Eura J Food Sci Technol 3(1):26–33

    Google Scholar 

  • Onuegbu CU, Aggarwal A, Singh NB (2018) ZnO nanoparticles as feed supplement on growth performance of cultured African catfish fingerlings. Journal of Scientific and Industrial Research. 77:213–218. http://nopr.niscair.res.in/handle/123456789/44151

  • Patlolla AK, Hackett D, Tchounwou PB (2015) Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food Chem Toxicol 85:52–60. https://doi.org/10.1016/j.fct.2015.05.005

    Article  CAS  Google Scholar 

  • Pinto RJ, Daina S, Sadocco P, Neto CP, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Intern. https://doi.org/10.1155/2013/280512

    Article  Google Scholar 

  • Plant KP, LaPatra SE (2011) Advances in fish vaccine delivery. Dev Comp Immunol 35(12):1256–1262. https://doi.org/10.1016/j.dci.2011.03.007

    Article  CAS  Google Scholar 

  • Prasad P, Kochhar A (2014) Active packaging in food industry: a review. IOSR. J Environ Sci Toxicol Food Technol 8:01–07. https://doi.org/10.9790/2402-08530107

    Article  Google Scholar 

  • Preetha R, Rani K, Fernandez RE, Vemulachedu H, Veeramani MS, Sugan M, Bhattacharya EI, Chadha A (2011) Potentiometric estimation of blood analytes—triglycerides and urea: comparison with clinical data and estimation of urea in milk using an electrolyte-insulator-semiconductor-capacitor (EISCAP). Sens Actu B Chem 160:1439–1443

    Article  CAS  Google Scholar 

  • Rimm EB et al (2018) Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American heart association. Circulation 138(1):e35–e47

    Article  CAS  Google Scholar 

  • Rather MA, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M et al (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquacult J 16:1–15. https://doi.org/10.4172/2150-3508.1000016

    Article  Google Scholar 

  • Rajeswari VD, Eed EM, Elfasakhany A et al (2021) Green synthesis of titanium dioxide nanoparticles using Laurus nobilis (bay leaf): antioxidant and antimicrobial activities. Appl Nanosci 1:1–8. https://doi.org/10.1007/s13204-021-02065-2

    Article  CAS  Google Scholar 

  • Ramesh S, Radhakrishnan P (2020) Areca nut fiber nano crystals, clay nano particles and PVA blended bionanocomposite material for active packaging of food. Appl Nano Sci. https://doi.org/10.1007/s13204-020-01617-2

    Article  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities, and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):72–96

    Article  Google Scholar 

  • Ravishankar Rai V (2011) Nanoparticles and their potential application as antimicrobials. A Méndez-Vilas A (ed). Mysore, Formatex. 211–224

  • Rizeq BR, Younes NN, Rasool K, Nasrallah GK (2019) Synthesis, Bioapplications, and toxicity evaluation of chitosan-based nanoparticles. Int J Mole Sci 20(22):5776. https://doi.org/10.3390/ijms20225776

    Article  CAS  Google Scholar 

  • Rosenkranz P, Fernández-Cruz ML, Conde E, Ramírez-Fernández MB, Flores JC, Fernández M, Navas JM (2012) Effects of cerium oxide nanoparticles to fish and mammalian cell lines: an assessment of cytotoxicity and methodology. Toxicol in Vitro 26(6):888–896. https://doi.org/10.1016/j.tiv.2012.04.019

    Article  CAS  Google Scholar 

  • Rouhani M (2019) Fluoro-functionalized graphene as a promising nanosensor in detection of fish spoilage: a theoretical study. Chem Phys Lett 719:91–102. https://doi.org/10.1016/j.cplett.2019.02.001

    Article  CAS  Google Scholar 

  • Sathivel S, Kramer D (2010) Microencapsulation, nanoencapsulation, edible film, and coating applications in seafood processing. Handbook Seafood Quality Safety Health Appl 1:414–422. https://doi.org/10.1002/9781444325546.ch33

    Article  Google Scholar 

  • Sadadekar AS, Shruthy R, Preetha R et al (2022) Enhanced antimicrobial and antioxidant properties of nano chitosan and pectin based biodegradable active packaging films incorporated with fennel (Foeniculum vulgare) essential oil and potato (Solanum tuberosum) peel extracts. J Food Sci Technol Published Online. https://doi.org/10.1007/s13197-021-05333-9

    Article  Google Scholar 

  • Saleh M, Soliman H, Haenen O, El-Matbouli M (2011) Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis. 34(11):845–852. https://doi.org/10.1111/j.1365-2761.2011.01302.x

    Article  CAS  Google Scholar 

  • Sarkar B, Mahanty A, Gupta SK, Choudhury AR, Daware A, Bhattacharjee S (2022) Nanotechnology: a next-generation tool for sustainable aquaculture. Aquaculture 546:737330

    Article  CAS  Google Scholar 

  • Senthilkumar G, Rameshkumar C, Nikhil MN, Kumar JN (2018) An investigation of nanobubbles in aqueous solutions for various applications. Appl Nanosci 8(6):1557–1567. https://doi.org/10.1007/s13204-018-0831-8

    Article  CAS  Google Scholar 

  • Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12(2):925–942. https://doi.org/10.1111/raq.12356

    Article  Google Scholar 

  • Shruthy R, Preetha R (2019) Cellulose nanoparticles from agro-industrial waste for the development of active packaging. Appl Surf Sci 484:1274–1281

    Article  Google Scholar 

  • Shruthy R, Preetha R (2020) Cellulose Nano particles synthesized from potato peel for the development of active packaging film for enhancement of shelf-life of raw prawns (Penaeus monodon) during frozen storage. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14551

    Article  Google Scholar 

  • Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol 8:1501. https://doi.org/10.3389/fmicb.2017.01501

    Article  Google Scholar 

  • Siqueira PR, de Lustosa Carmo TL, Bonomo MM, Aparecido F, de Santos M, Fernandes N (2021) Proliferative response avoids mutagenic effects of titanium dioxide (TiO2) nanoparticles in a zebrafish hepatocyte cell line. J Hazard Mater Advan 4:100036

    Article  CAS  Google Scholar 

  • Srivastava AK, Dev A, Karmakar S (2018) Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett 16(1):161–182

    Article  CAS  Google Scholar 

  • Swain P, Nayak SK, Sasmal A, Behera T, Barik SK, Swain SK et al (2014) Antimicrobial activity of metal-based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol 30(9):2491–2502

    Article  CAS  Google Scholar 

  • Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS (2014) In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 161:41–52

    Article  CAS  Google Scholar 

  • Tadese DA, Song C, Sun C, Liu B, Liu B, Zhou Q, Xu P, Ge X, Liu M, Xu X, Tamiru M, Zhou Z, Lakew A, Tlou Kevin N (2022) The role of currently used medicinal plants in aquaculture and their action mechanisms: a review. Rev Aquac 14:816–847. https://doi.org/10.1111/raq.12626

    Article  Google Scholar 

  • Wang Z, Wu A, ColombiCiacchi L, Wei G (2018) Recent advances in nanoporous membranes for water purification. Nanomaterials 8(2):65

    Article  CAS  Google Scholar 

  • Wu C et al (2016) Formation mechanism of nano-scale antibiotic and its preservation performance for silvery pomfret. Food Control 69:331–338

    Article  CAS  Google Scholar 

  • Wu Y, Rashidpour A, Almajano MP, Metón I (2020) Chitosan-based drug delivery system: applications in fish biotechnology. Polymers (Basel) 12(5):1177. https://doi.org/10.3390/polym12051177

    Article  CAS  Google Scholar 

  • Xiao X, He Q, Fu Z, Xu M, Zhang, (2016) Applying CS and WSN methods for improving efficiency of frozen and chilled aquatic products monitoring system in cold chain logistics. Food Control 60(1):656–666. https://doi.org/10.1016/j.foodcont.2015.09.012

    Article  Google Scholar 

  • Xu J, Zhang M, Bhandar B, Kachele R (2017) ZnO nanoparticles combined radio frequency heating: A novel method to control microorganism and improve product quality of prepared carrots. Innovat Food Sci Em Technol 44:46–53

    Article  CAS  Google Scholar 

  • Zhang S, Zhang M, Fang Z, Liu Y (2017a) Preparation and characterization of blended cloves/cinnamon essential oil Nano emulsions. LWT 75(1):316–322

    Article  CAS  Google Scholar 

  • Zhang M et al (2017b) Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit Rev Food Sci Nutr 57(6):1239–1255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our thanks to Prof. C. Muthamizchelvan, V.C., SRM Institute of Science and Technology and Dr. M. Vairamani, Chairperson, School of Bioengineering, SRM Institute of Science and Technology for cordial support. Corresponding author acknowledge Atul Sreenath for graphics assistance.

Funding

No funds, grants, or other support was received for this review. The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

CAY and LN: contributed equally and designed the contents of this review paper. Corresponding author: RP. Conceptualization: RP. Writing—original draft: CAY and LN. Writing—review and editing: CAY, LN, RP and RKVJ. Supervision: RP.

Corresponding author

Correspondence to Radhakrishnan Preetha.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

Ethical approval is not required for this review. Not Applicable.

Consent to participate

Not required for this article.

Consent for publication

Not required for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yochabedh, C.A., Nandhini, L., Preetha, R. et al. Nanomaterials in aquatic products and aquatic systems, and its safety aspects. Appl Nanosci 13, 5435–5448 (2023). https://doi.org/10.1007/s13204-023-02834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-023-02834-1

Keywords

Navigation