Skip to main content

Advertisement

Log in

Synthesis and photocatalytic efficiency of plasmonic Ag/TiO2:S nanosystems

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Metal/semiconductor nanoparticles have been fabricated with a simple, inexpensive, and efficient laser-assisted photoreduction. Wherein the silver nanoparticles were photo deposed directly on the commercial P25 and S-doped titanium dioxide nanoparticles during the synthesis. The Ag-modified TiO2:S nanoparticles showed enhanced absorption capacity in the visible spectral range compared to Ag-TiO2 nanoparticles. Moreover Ag/TiO2:S nanoparticles showed stronger photocatalytic activity which are manifested in the oxidation and decomposition of the Rhodamine 6G organic dye under the visible light irradiation. Such a high photocatalytic activity of the Ag-TiO2:S nanoparticles is attributed to the Ag nanoparticles-localized surface plasmon resonance and enhanced electron–hole separation on the catalysts surface. The efficiency of using plasmon metal–semiconductor nanostructures in dentistry for teeth whitening by visible range radiation is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 

Similar content being viewed by others

References

  • Abbad S, Guergouri K, Gazaout S, Djebabra S, Zertal A, Barille R, Zaabat M (2020) Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J Environ Chem Eng 8(3):103718

    Article  CAS  Google Scholar 

  • Aulakh MK, Sharma R, Pal B, Prakash R (2020) Photo-induced oxidation and reduction by plasmonic Ag-TiO2 nanocomposites under UV/sunlight. Sol Energy 196:427–436

    Article  Google Scholar 

  • Balachandran K, Mageswari S, Preethi A (2021) Photocatalytic decomposition of A549-lung cancer cells by TiO2 nanoparticles. Mater Today Proc 37:1071–1074

    Article  CAS  Google Scholar 

  • Bhardwaj S, Sharma D, Kumari P, Pal B (2020) Influence of photodeposition time and loading amount of Ag co-catalyst on growth, distribution, and photocatalytic properties of Ag@ TiO2 nanocatalysts. Opt Mater 106:109975

    Article  CAS  Google Scholar 

  • Bulavinets T, Yaremchuk I, Fitio V, Bobitski Y (2019a) Spectral characteristics of the titanium dioxide-silver nanoshells under localized surface plasmon resonance. In: Bulavinets T (ed) 2019 IEEE 2nd Ukraine conference on electrical and computer engineering (UKRCON). IEEE, Lviv, pp 762–765

    Chapter  Google Scholar 

  • Bulavinets T, Yaremchuk I, Fitio V, Barylyak A, Bobitski Y (2019b) Comparison of spectral characteristics of TiO 2@ Ag and Ag@ TiO 2 core-shell nanoparticles. In: Bulavinets T (ed) 2019 International conference on information and telecommunication technologies and radio electronics (UkrMiCo). IEEE, Lviv, pp 1–4

    Google Scholar 

  • Cionti C, Della Pina C, Meroni D, Falletta E, Ardizzone S (2020) Photocatalytic and oxidative synthetic pathways for highly efficient PANI-TiO2 nanocomposites as organic and inorganic pollutant sorbents. Nanomaterials 10(3):441

    Article  CAS  Google Scholar 

  • Council of The European Union (2011) Council directive 2011/84/EU, amending directive 76/768/EEC concerning cosmetic products. Off J Eur Union 283:36–38

    Google Scholar 

  • Cui Y, Du H, Wen L (2009) Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO2 by first-principles investigation. Solid State Commun 149(15–16):634–637

    Article  CAS  Google Scholar 

  • Cuppini M, Leitune VC, de Souza M, Alves AK, Samuel SM, Collares FM (2019) In vitro evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching. Dental Mater J. https://doi.org/10.4012/dmj.2017-199

    Article  Google Scholar 

  • Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M, Wu N et al (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134(36):15033–15041

    Article  CAS  Google Scholar 

  • Elleuch L, Messaoud M, Djebali K, Attafi M, Cherni Y, Kasmi M, Chatti A et al (2020) A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process. J Hazard Mater 382:121119

    Article  CAS  Google Scholar 

  • Gomes J, Lincho J, Domingues E, Quinta-Ferreira RM, Martins RC (2019) N-TiO2 photocatalysts: a review of their characteristics and capacity for emerging contaminants removal. Water 11(2):373

    Article  CAS  Google Scholar 

  • Grimes PE (2020) Impact of iron-oxide containing formulations against visible light-induced skin pigmentation in skin of color individuals. J Drugs Dermatol 19(7):712–717

    Article  Google Scholar 

  • Harb M, Sautet P, Raybaud P (2013) Anionic or cationic S-doping in bulk anatase TiO2: insights on optical absorption from first principles calculations. J Phys Chem C 117(17):8892–8902

    Article  CAS  Google Scholar 

  • He F, Jeon W, Choi W (2021) Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat Commun 12(1):1–4

    Article  Google Scholar 

  • Kubiak A, Bielan Z, Bartkowiak A, Gabała E, Piasecki A, Zalas M, Jesionowski T et al (2020) Synthesis of titanium dioxide via surfactant-assisted microwave method for photocatalytic and dye-sensitized solar cells applications. Catalysts 10(5):586

    Article  CAS  Google Scholar 

  • Li R, Li T, Zhou Q (2020) Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—a review. Catalysts 10(7):804

    Article  CAS  Google Scholar 

  • Mamaghani AH, Haghighat F, Lee CS (2021) Effect of titanium dioxide properties and support material on photocatalytic oxidation of indoor air pollutants. Build Environ 189:107518

    Article  Google Scholar 

  • Narkbuakaew T, Sujaridworakun P (2019) Role of Ag (0) deposited on TiO2 nanoparticles for superior photocatalytic performance induced by calcination. Opt Mater 98:109407

    Article  CAS  Google Scholar 

  • Nunes D, Freire T, Barranger A, Vieira J, Matias M, Pereira S, Martins R et al (2020) TiO2 nanostructured films for electrochromic paper based-devices. Appl Sci 10(4):1200

    Article  CAS  Google Scholar 

  • Peeters H, Keulemans M, Nuyts G, Vanmeert F, Li C, Minjauw M, Verbruggen SW et al (2020) Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings. Appl Catal B 267:118654

    Article  CAS  Google Scholar 

  • Piątkowska A, Janus M, Szymański K, Mozia S (2021) C-, N-and S-doped TiO2 photocatalysts: a review. Catalysts 11(1):144

    Article  Google Scholar 

  • Porcu S, Castellino M, Roppolo I, Carbonaro CM, Palmas S, Mais L, Ricci PC (2020) Highly efficient visible light phenyl modified carbon nitride/TiO2 photocatalyst for environmental applications. Appl Surf Sci 531:147394

    Article  CAS  Google Scholar 

  • Sakar M, Nguyen CC, Vu MH, Do TO (2018) Materials and mechanisms of photo-assisted chemical reactions under light and dark conditions: can day–night photocatalysis be achieved? Chemsuschem 11(5):809–820

    Article  CAS  Google Scholar 

  • Salama B, El-Sherbini ES, El-Sayed G, El-Adl M, Kanehira K, Taniguchi A (2020) The effects of TiO2 nanoparticles on cisplatin cytotoxicity in cancer cell lines. Int J Mol Sci 21(2):605

    Article  CAS  Google Scholar 

  • Segundo RI, Freitas E, Landi S, Costa MF, Carneiro JO (2019) Smart, photocatalytic, and self-cleaning asphalt mixtures: a literature review. Coatings 9(11):696

    Article  CAS  Google Scholar 

  • Takai A, Kamat PV (2011) Capture, store, and discharge. Shuttling photogenerated electrons across TiO2–silver interface. ACS Nano 5(9):7369–7376

    Article  CAS  Google Scholar 

  • Tseng J, Huang CP (2021) Photocatalytic oxidation process for the treatment of organic wastes. Chem Oxid Technol Nineties. 1:262–277

    Google Scholar 

  • Vakhula Y, Besaha K, Lutsyuk I (2012) Surface modification of titanium (IV) oxide sol-gel powders by sulfur. ChChT 6(4):431–434

    Article  Google Scholar 

  • Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y (2020) Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 49(17):6198–6223

    Article  CAS  Google Scholar 

  • Wysocka I, Kowalska E, Ryl J, Nowaczyk G, Zielińska-Jurek A (2019) Morphology, photocatalytic and antimicrobial properties of TiO2 modified with mono-and bimetallic copper, platinum, and silver nanoparticles. Nanomaterials 9(8):1129

    Article  CAS  Google Scholar 

  • Yaremchuk I, Bulavinets T, Fitio V, Bobitski Y (2020) Core-shell nanostructures under localized plasmon resonance conditions. In: Fesenko O, Yatsenko L (eds) Nanooptics and photonics, nanochemistry and nanobiotechnology, and their applications. Springer, Cham, pp 391–400

    Chapter  Google Scholar 

  • Yu C, Sasic S, Liu K, Salameh S, Ras RH, van Ommen JR (2020) Nature-Inspired self–cleaning surfaces: mechanisms, modelling, and manufacturing. Chem Eng Res Des 155:48–65

    Article  CAS  Google Scholar 

  • Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401

    Article  Google Scholar 

  • Zhang R, Wang H, Peng X, Feng RR, Liu AA, Guo Q, Ren Z et al (2019a) In situ studies on temperature-dependent photocatalytic reactions of methanol on TiO2 (110). J Phys Chem C 123(15):9993–9999

    Article  CAS  Google Scholar 

  • Zhang B, Cao S, Du M, Ye X, Wang Y, Ye J (2019b) Titanium dioxide (TiO2) mesocrystals: synthesis, growth mechanisms and photocatalytic properties. Catalysts 9(1):91

    Article  Google Scholar 

  • Zheng X, Zhang D, Gao Y, Wu Y, Liu Q, Zhu X (2019) Synthesis and characterization of cubic Ag/TiO2 nanocomposites for the photocatalytic degradation of methyl orange in aqueous solutions. Inorg Chem Commun 110:107589

    Article  CAS  Google Scholar 

  • Zhong T, Li H, Zhao T, Guan H, Xing L, Xue X (2021) Self-powered/self-cleaned atmosphere monitoring system from combining hydrovoltaic, gas sensing and photocatalytic effects of TiO2 nanoparticles. J Mater Sci Technol 76:33–40

    Article  CAS  Google Scholar 

  • Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L (2020) Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials 10(2):387

    Article  CAS  Google Scholar 

  • Zu M, Zhou X, Zhang S, Qian S, Li DS, Liu X, Zhang S (2021) Sustainable engineering of TiO2-based advanced oxidation technologies: from photocatalyst to application devices. J Mater Sci Technol 78:202–222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Ministry of Education and Science of Ukraine should be acknowledged (grant “Nanostructured interfaces based on non-toxic materials for practical applications” no. 0120u100675).

Author information

Authors and Affiliations

Authors

Contributions

TB and IY carried out the experiments, wrote and arranged the article. AB provided materials and discussed results. YB conceived and proposed the research. All authors read and approved the final article.

Corresponding author

Correspondence to Tetiana Bulavinets.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulavinets, T., Yaremchuk, I., Bobitski, Y. et al. Synthesis and photocatalytic efficiency of plasmonic Ag/TiO2:S nanosystems. Appl Nanosci 13, 4693–4699 (2023). https://doi.org/10.1007/s13204-022-02593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02593-5

Keywords

Navigation