Skip to main content

Advertisement

Log in

Bulk turbostratic graphene deposition on aluminum substrates via high-pressure graphite blasting

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This work presents the mechanical exfoliation of graphite into graphene nanoplatelets via high-pressure blasting onto metallic substrates. After ensuring successful graphene deposition via Raman spectroscopy, the substrates are then tested to detect the enhancement of their thermal, optical, and electrochemical properties. The process is facile and straightforward, with no special requirements in terms of energy addition or isolation and is capable of depositing graphene over large surface areas. The application of such approach is especially suitable for solar thermal absorbers enhancement, as the thermal, optical, and corrosion resistance properties of metallic plates made of copper or aluminum benefit from the deposition at the macroscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alami A, Aokal K, Assad M, Zhang D, Alawadhi H, Rajab B (2017) One-step synthesis and deposition of few-layer graphene via facile, dry ball-free milling. MRS Adv 27:847–856

    Article  CAS  Google Scholar 

  • Application note 52252: Thermo Scientific (2011) The Raman spectroscopy of graphene and the determination of layer thickness. https://tools.thermofisher.com/content/sfs/brochures/AN52252_E%201111%20LayerThkns_H_1.pdf. Accessed Aug 2018

  • Bunch J, Verbridge S, Alden J, van der Zande A, Parpia J, Craighead H, McEuen P (2008) Impermeable atomic membranes from graphene sheets. Nano Letters 8:2458–2462

    Article  CAS  Google Scholar 

  • Cai M, Thorpe D, Adamson D, Schniepp H(2012) Methods of graphite exfoliation. J Mater Chem 22:24992–5002

    Article  CAS  Google Scholar 

  • Cançado L, Takai K, Enoki T, Endo M, Kim Y, Mizusaki H, Jorio A, Coelho L, Magalhães-Paniago R, Pimenta M (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106

    Article  Google Scholar 

  • Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424

    Article  CAS  Google Scholar 

  • Ferrari A (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  • Ferrari A, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B 64:075414

    Article  Google Scholar 

  • Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1874015

    Google Scholar 

  • Guermoune A, Chari T, Popescu F, Sabri S, Guillemette J, Skulason H, Szkopek T, Siaj M, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13):4204–4210

    Article  CAS  Google Scholar 

  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  CAS  Google Scholar 

  • Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75

    Article  CAS  Google Scholar 

  • Malig J, Jux N, Guldi D (2013) Toward multifunctional wet chemically functionalized graphene—integration of oligomeric, molecular, and particulate building blocks that reveal photoactivity and redox activity. Acc Chem Res 46(1):53–64

    Article  CAS  Google Scholar 

  • Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A (2008) fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films science 306(5696):666–669

    CAS  Google Scholar 

  • Pierson H (2001) Handbook of chemical vapor deposition (CVD) principles, technology and applications. Noyes Publications, Park Ridge

    Google Scholar 

  • Sahoo N, Pan Y, Li L, Chan S (2012) Graphene-based materials for energy conversion. Adv Mater 4(30):4203–4210

    Article  Google Scholar 

  • Singh Raman R, Chakraborty Banerjee P, Lobo D, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan P, Majumder M (2012) Protecting copper from electrochemical degradation by graphene coating. Carbon 50:4040–4045

    Article  CAS  Google Scholar 

  • Zhang Y, Yu P, Wang J, Li Y, Chen F, Wei K, Zuo Y (2018) LDHs/graphene film on aluminum alloys for active protection. Appl Surf Sci 433:927–933

    Article  CAS  Google Scholar 

  • Zhao B, Zhao J, Zhang Z (2014) Enhancement of near-infrared absorption in graphene with metal gratings. Appl Phys Lett 105:031905

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Hai Alami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alami, A.H., Aokal, K., Zhang, D. et al. Bulk turbostratic graphene deposition on aluminum substrates via high-pressure graphite blasting. Appl Nanosci 8, 1943–1950 (2018). https://doi.org/10.1007/s13204-018-0862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0862-1

Keywords

Navigation