Skip to main content

Advertisement

Log in

Insights on the genetic repertoire of the coral Mussismilia braziliensis endosymbiont Symbiodinium

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Reef-building corals form a symbiotic association with photosynthetic dinoflagellates of the family Symbiodiniaceae. This symbiosis is crucial for the maintenance of coral reefs. In this work, we evaluate the effect of light conditions on the transcriptomic response of Symbiodinium CCMR0100 (ITS2 type A4), isolated from the Southwestern Atlantic Ocean endemic Mussismilia braziliensis. We obtained a total of 36,224 transcripts (N50 = 1007 bases, mean GC = 55.7%; ~25 Gb of assembled bases). We observed ecologically relevant transcripts encoding i. the complete antioxidant enzymatic system, ii. the recently described algal dimethylsulfoniopropionate (DMSP) lyase, and iii. The Mycosporine-like aminoacids (MAA) biosynthesis pathway. Cultures maintained in dark and light conditions yielded different transcriptomic profiles, and 48 transcripts were differentially expressed between these treatments. Expression of cytochrome P450 was inhibited by light, suggesting that endoplasmic reticulum monooxygenase activity might play a role in light-independent coral bleaching. Light conditions also triggered the induction of transcripts associated to chromatin condensation and mitosis, consistent with the light dependent progression of Symbiodiniaceae cell cycle. The repression of transcripts associated to the phosphatidylinositol (PI) signaling pathwaysuggests this pathway shall be related to light-induced morphological changes in Symbiodiniaceae cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alcolombri U, Ben-Dor S, Feldmesser E, Levin Y, Tawfik DS, Vardi A (2015) Identification of the algal dimethyl sulfide–releasing enzyme: a missing link in the marine sulfur cycle. Science 348(6242):1466–1469

    CAS  PubMed  Google Scholar 

  • Alexa A, Rahnenfuhrer J (2010) topGO: enrichment analysis for gene ontology. R package version, 2(0)

  • Aranda M et al (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive change. Nature. 411(6839):765–766

    CAS  PubMed  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banaszak AT, LaJeunesse TC, Trench RK (2000) The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J Exp Mar Biol Ecol 249:219–233

    CAS  Google Scholar 

  • Barbrook AC, Voolstra CR, Howe CJ (2014) The chloroplast genome of a Symbiodinium sp. clade C3 isolate. Protist 165(1):1–13

    CAS  PubMed  Google Scholar 

  • Baumgarten S et al (2013) Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics 14:1

    Google Scholar 

  • Bayer T, Aranda M, Sunagawa S, Yum LK, Desalvo MK, Lindquist E, Coffroth MA, Voolstra CR, Medina M (2012) Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS One 7(4):e35269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, Devantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JE, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321(5888):560–563

    CAS  PubMed  Google Scholar 

  • Decelle J et al (2018) Worldwide occurrence and activity of the reef-building coral Symbiont Symbiodinium in the Open Ocean. Curr Biol 28(22):3625–3633

    CAS  PubMed  Google Scholar 

  • Díaz-Almeyda E, Thomé PE, El Hafidi M, Iglesias-Prieto R (2011) Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs 30(1):217–225

    Google Scholar 

  • Díaz-Almeyda EM et al (2017) Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc R Soc B 284(1868):20171767

    PubMed  PubMed Central  Google Scholar 

  • Dubousquet V, Gros E, Berteaux-Lecellier V, Viguier B, Raharivelomanana P, Bertrand C, Lecellier GJ (2016) Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress. Biol Open 5(10):1400–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol B: Biochem Mol Biol 112(1):105–114

    Google Scholar 

  • Eddy S (2003) HMMER User’s guide. Biological sequence analysis using profile hidden Markov models

  • Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94(3):421–432

    Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next generation sequencing data. Bioinformatics 28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujise L, Nitschke MR, Frommlet JC, Serôdio J, Woodcock S, Ralph PJ, Suggett DJ (2018) Cell cycle dynamics of cultured coral endosymbiotic microalgae (Symbiodinium) across different types (species) under alternate light and temperature conditions. J Eukaryot Microbiol 65(4):505–517

    CAS  PubMed  Google Scholar 

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9(11):791–802

    CAS  PubMed  Google Scholar 

  • Garcia GD, Santos Ede O, Sousa GV, Zingali RB, Thompson CC, Thompson FL (2016) Metaproteomics reveals metabolic transitions between healthy and diseased stony coral Mussismilia braziliensis. Mol Ecol 25:4632–4644

    CAS  PubMed  Google Scholar 

  • Gierz SL, Forêt S, Leggat W (2017) Transcriptomic analysis of thermally stressed Symbiodinium reveals differential expression of stress and metabolism genes. Front Plant Sci 28(8):271

    Google Scholar 

  • González-Pech RA, Ragan MA, Chan CX (2017) Signatures of adaptation and symbiosis in genomes and transcriptomes of Symbiodinium. Sci Rep 7(1):15021

    PubMed  PubMed Central  Google Scholar 

  • Gornik SG, Ford KL, Mulhern TD, Bacic A, McFadden G, Waller RF (2012) Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr Biol 22(24):2303–2312

    CAS  PubMed  Google Scholar 

  • Grabherr MG et al (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29(7):644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grottoli AG et al (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob Chang Biol 20(12):3823–3833

    PubMed  Google Scholar 

  • Hansen G, Daugbjerg N (2009) Symbiodinium natans sp. nov.: a “free living” dinoflagellate from Tenerife (Northeast Atlantic Ocean). J Phycol 45(1):251–263

    PubMed  Google Scholar 

  • Hill R, Ulstrup KE, Ralph PJ (2009) Temperature induced changes in thylakoid membrane thermostability of cultured, freshly isolated, and expelled zooxanthellae from scleractinian corals. Bull Mar Sci 85(3):223–244

    Google Scholar 

  • Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638

    Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37(5):866–880

    CAS  Google Scholar 

  • LaJeunesse TC et al (2015) Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist ‘zooxanthella’ found in bleached and diseased tissues of Caribbean reef corals. Eur J Phycol 50(2):223–238

    Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28(16):2570–2580

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D (2007) Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef building corals. J Phycol 43(5):1010–1021

    CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    CAS  PubMed  Google Scholar 

  • Levin RA et al. (2016) Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances. Mol Biol Evol 33(9):2201–2215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12(1):1

    Google Scholar 

  • Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, Li L, Zhang Y, Zhang H, Ji Z, Cai M, Zhuang Y, Shi X, Lin L, Wang L, Wang Z, Liu X, Yu S, Zeng P, Hao H, Zou Q, Chen C, Li Y, Wang Y, Xu C, Meng S, Xu X, Wang J, Yang H, Campbell DA, Sturm NR, Dagenais-Bellefeuille S, Morse D (2015) The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science 350(6261):691–694

    CAS  PubMed  Google Scholar 

  • Liu H et al (2018) Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol 1(1):95

    PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10

    Google Scholar 

  • McGinley MP, Suggett DJ, Warner ME (2013) Transcript patterns of chloroplast encoded genes in cultured Symbiodinium spp.(Dinophyceae): testing the influence of a light shift and diel periodicity. J Phycol 49(4):709–718

    CAS  PubMed  Google Scholar 

  • McGinty ES, Pieczonka J, Mydlarz LD (2012) Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol 64(4):1000–1007

    CAS  PubMed  Google Scholar 

  • McLenon AL, DiTullio GR (2012) Effects of increased temperature on dimethylsulfoniopropionate (DMSP) concentration and methionine synthase activity in Symbiodinium microadriaticum. Biogeochemistry 110(1–3):17–29

    CAS  Google Scholar 

  • Muller-Parker G, D’elia CF, Cook CB (2015) Interactions between corals and their symbiotic algae. InCoral reefs in the Anthropocene (pp. 99-116). Springer, Dordrecht.

    Google Scholar 

  • Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S, Satoh N, Shoguchi E (2014) Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol Evol 6(6):1408–1422

    PubMed  PubMed Central  Google Scholar 

  • Nunes F, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Mol Ecol 18(20):4283–4297

    CAS  PubMed  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269(1): 1–0, 10

    CAS  PubMed  Google Scholar 

  • Parkinson JE, Baumgarten S, Michell CT, Baums IB, LaJeunesse T, Voolstra CR (2016) Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol Evol 8(3):665–680

    PubMed  PubMed Central  Google Scholar 

  • Picciani N et al (2016) Geographic patterns of Symbiodinium diversity associated with the coral Mussismilia hispida (Cnidaria, Scleractinia) correlate with major reef regions in the southwestern Atlantic Ocean. Mar Biol 163(11):236

    Google Scholar 

  • Polne-Fuller M (1991) A novel technique for preparation of axenic cultures of Symbiodinium (Pyrrophyta) through selective digestion by amoebae. J Phycol 27(4):552–554

    Google Scholar 

  • Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    CAS  PubMed  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing

  • Reynolds JM, Bruns BU, Fit WK, Schmidt GW (2008) Enhanced photoprotection pathways in symbiotic dinoflagellates of shallow-water corals and other cnidarians. PNAS 105(36):13674–13678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie ME et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204(1):81–91

    CAS  PubMed  Google Scholar 

  • Roberty S, Furla P, Plumier JC (2016) Differential antioxidant response between two Symbiodinium species from contrasting environments. Plant Cell Environ 39(12):2713–2724

    CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    CAS  PubMed  Google Scholar 

  • Rosic NN (2019) Mycosporine-like amino acids: making the foundation for organic personalised sunscreens. Marine Drugs 17(11):638

    PubMed Central  Google Scholar 

  • Rosic NN, Dove S (2011) Mycosporine-like amino acids from coral dinoflagellates. Appl Environ Microbiol 77(24):8478–8486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosic NN, Pernice M, Dunn S, Dove S, Hoegh-Guldberg O (2010) Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals. Appl Environ Microbiol 76(9):2823–2829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosic NN et al (2015) Unfolding the secrets of coral–algal symbiosis. ISME 9(4):844

    CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388(6639):265–269

    CAS  PubMed  Google Scholar 

  • Ryu T, Mavromatis C, Bayer T, Voolstra C, Ravasi T (2011) Unexpected complexity of the reef-building coral Acropora millepora transcription factor network. BMC Syst Biol 5:58–58

    PubMed  PubMed Central  Google Scholar 

  • Santos SR, LaJeunesse TC (2006) Searchable database of Symbiodinium diversity - geographic and ecological diversity (SD2-GED). http://www.auburn.edu/~santosr/sd2_ged.htm. Auburn University, Auburn

  • Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37:900–912

    CAS  Google Scholar 

  • Saragosti E, Tchernov D, Katsir A, Shaked Y (2010) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS One 5(9):e12508

    PubMed  PubMed Central  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, Takeuchi T, Hisata K, Tanaka M, Fujiwara M, Hamada M, Seidi A, Fujie M, Usami T, Goto H, Yamasaki S, Arakaki N, Suzuki Y, Sugano S, Toyoda A, Kuroki Y, Fujiyama A, Medina M, Coffroth MA, Bhattacharya D, Satoh N (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23(15):1399–1408

    CAS  PubMed  Google Scholar 

  • Shoguchi E, Shinzato C, Hisata K, Satoh N, Mungpakdee S (2015) The large mitochondrial genome of Symbiodinium minutum reveals conserved noncoding sequences between dinoflagellates and apicomplexans. Genome Biol Evol 7(8):2237–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, Arakaki N, Fujie M, Koyanagi R, Roy MC, Kawachi M, Hidaka M, Satoh N, Shinzato C (2018) Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19(1):458

    PubMed  PubMed Central  Google Scholar 

  • Silva-Lima AW, Walter JM, Garcia GD, Ramires N, Ank G, Meirelles PM, Nobrega AF, Siva-Neto ID, Moura RL, Salomon PS, Thompson CC, Thompson FL (2015) Multiple Symbiodinium strains are hosted by the Brazilian endemic corals Mussismilia spp. Microb Ecol 70(2):301–310

    PubMed  Google Scholar 

  • Silveira CB et al (2017) Bacterial community associated with the reef coral Mussismilia braziliensis's momentum boundary layer over a diel cycle. Front Microbiol 8:784

    PubMed  PubMed Central  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212

    PubMed  Google Scholar 

  • Simpson MF et al (2008) Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics 9(1):363

    PubMed  PubMed Central  Google Scholar 

  • Sorek M, Díaz-Almeyda EM, Medina M, Levy O (2004) Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host. Mar Genomics 14:47–57

    Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44(4):948–956

    CAS  PubMed  Google Scholar 

  • Suggett DJ et al (2012) Photobiology of corals from Brazil’s near-shore marginal reefs of Abrolhos. Mar Biol 159(7):1461–1473

    Google Scholar 

  • Sunda WK, Kieber DJ, Kiene R, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418(6895):317–320

    CAS  PubMed  Google Scholar 

  • Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR (2013) Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol 161(1):477–485

    CAS  PubMed  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. PNAS 101(37):13531–13535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira CD et al (2019) Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs 38(4):801–813

    Google Scholar 

  • Tolleter D, Seneca FO, DeNofrio J, Krediet CJ, Palumbi SR, Pringle JR, Grossman AR (2013) Coral bleaching independent of photosynthetic activity. Curr Biol 23(18):1782–1786

    CAS  PubMed  Google Scholar 

  • Villanueva MA, Barnay-Verdier S, Priouzeau F, Furla P (2015) Chloroplast and oxygen evolution changes in Symbiodinium sp. as a response to latrunculin and butanedione monoxime treatments under various light conditions. Photosynth Res 124(3):305–313

    CAS  PubMed  Google Scholar 

  • Voolstra CR et al (2009) Evolutionary analysis of orthologous cDNA sequences from cultured and symbiotic dinoflagellate symbionts of reef-building corals (Dinophyceae: Symbiodinium). Comp Biochem Phys D 4(2):67–74

    Google Scholar 

  • Waller RF, Slamovits CH, Keeling PJ (2006) Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Mol Biol Evol 23:1437–1443

    CAS  PubMed  Google Scholar 

  • Wang LH et al (2008) Cell cycle propagation is driven by light–dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs 27(4):823

    CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. PNAS 96(14):8007–8012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211(19):3059–3066

    CAS  PubMed  Google Scholar 

  • Weston AJ et al. (2015) Proteomics links the redox state to calcium signalling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress. Mol Cell Proteomics 14(3):585–595

    CAS  Google Scholar 

  • Xiang T, Nelson W, Rodriguez J, Tolleter D, Grossman AR (2015) Symbiodinium transcriptome and global responses of cells to immediate changes in light intensity when grown under autotrophic or mixotrophic conditions. Plant J 82(1):67–80

    CAS  PubMed  Google Scholar 

  • Yakovleva I, Bhagooli R, Takemura A, Hidaka M (2004) Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comp Biochem Physiol B: Biochem Mol Biol 139(4):721–730

    CAS  Google Scholar 

  • Yamashita H, Koike K (2013) Genetic identity of free living Symbiodinium obtained over a broad latitudinal range in the Japanese coast. Phycol Res 61(1):68–80

    CAS  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30(5):614–620

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by CNPq, CAPES, and FAPERJ. AWSL acknowledges the financial support from Science Without Borders program from CNPQ, process 232399/2014–0. MM was supported by NSF OCE 1442206 and OCE 1642311.

Author information

Authors and Affiliations

Authors

Contributions

AWSL conceived the study design, RNA extractions, the bioinformatic analysis and drafted the manuscript.

LSO and LL performed the transcriptome sequencing and prepared the MiSeq sequencing libraries.

JT participated in the discussion of the results and the draft manuscript, and the acquisition of funding.

MM, TV, and CLT participated in the discussion of the results and the draft manuscript.

FLT participated in the acquisition of funding, conceived the study design, discussion of the results and draft of the manuscript.

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Arthur W. Silva Lima or Fabiano L. Thompson.

Ethics declarations

The authors declare they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PNG 2 kb)

ESM 2

(XLS 7 kb)

ESM 3

(XLS 7 kb)

ESM 4

(XLS 7 kb)

ESM 5

(XLS 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva Lima, A.W., Leomil, L., Oliveira, L. et al. Insights on the genetic repertoire of the coral Mussismilia braziliensis endosymbiont Symbiodinium. Symbiosis 80, 183–193 (2020). https://doi.org/10.1007/s13199-020-00664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-020-00664-1

Keywords

Navigation