Skip to main content
Log in

Isolation of Serratia marcescens involved in chitin degradation in the bulb mite Rhizoglyphus robini

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

There is an increasing awareness of the importance of the microbiome of arthropods to understand their host’s biology. In the bulb mite, Rhizoglyphus robini, associated bacteria have been found to be involved in its chitinolytic abilities. The bulb mite, a plant pest feeding on below-ground parts of mostly Liliaceae crops, prefers fungus-infested plants. Moreover its fitness is higher when feeding on a fungal food source than when feeding on non-infected plants. In this study we isolated a chitinolytic bacterium from mite homogenate and identified it molecularly as Serratia marcescens (Bizio 1823), which is a model organism for chitin degradation. Precise identification of the bacterium can be important for the development of biological control programs of the mite as well as for further studies investigating Serratia marcescens and its chitinolytic machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ajithkumar B, Ajithkumar VP, Iriye R, Doi Y, Sakai T (2003) Spore-forming Serratia marcescens subsp sakuensis subsp nov., isolated from a domestic wastewater treatment tank. Int J Syst Evol Micr 53:253–258

    Article  CAS  Google Scholar 

  • Bouchon D, Zimmer M, Dittmer J (2016) The terrestrial isopod microbiome: an all-in-one toolbox for animal-microbe interactions of ecological relevance. Front Microbiol 7:1472

    Article  PubMed  PubMed Central  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal-RNA Gene from Escherichia coli. P Natl Acad Sci USA 75:4801–4805

    Article  CAS  Google Scholar 

  • Brurberg MB, Synstad B, Klemsdal SS et al (2001) Chitinases from Serratia marcescens. Recent Research Develelopments in Microbiology 5:187–204

    CAS  Google Scholar 

  • Burke GR, Moran NA (2011) Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biology and Evolution 3:195–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, The B-S, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera Littoralis. Scientific reports 6:29505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 377:699–735

    Article  Google Scholar 

  • Faramarzi MA, Fazeli M, Tabatabaei Yazdi M et al (2009) Optimization of cultural conditions for production of chitinase by a soil isolate of Massilia timonae. Biotechnol 8:93–99

    Article  CAS  Google Scholar 

  • Feldhaar H, Gross R (2009) Insects as hosts for mutualistic bacteria. Int J Med Microbiol 299:1–8

    Article  PubMed  Google Scholar 

  • Grimont PAD, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32:221–248

    Article  CAS  PubMed  Google Scholar 

  • Grunwald S, Pilhofer M, Holl W (2010) Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles (Coleoptera: Cerambycidae). Syst Appl Microbiol 33:25–34

    Article  CAS  PubMed  Google Scholar 

  • Guenduez EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. P Roy Soc Lond B Bio 276:987–991

    Article  Google Scholar 

  • Hanuny T, Inbar MLT, Palevsky E (2008) Complex interactions between Rhizoglyphus robini and Fusarium oxysporum: implications on onion pest management. IOBC proceedings of integrated control of protected crops, temperate climate. IOBC/ WPRS Bulletin 32:71–74

    Google Scholar 

  • Hover T, Maya T, Ron S, Sandovsky H, Shadkchan Y, Kijner N, Mitiagin Y, Fichtman B, Harel A, Shanks RMQ, Bruna RE, García-Véscovi E, Osherov N (2016) Mechanisms of bacterial (Serratia marcescens) attachment to, migration along, and killing of fungal hyphae. Appl Environ Microbiol 82:2585–2594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamelas A, Jose Gosalbes M, Manzano-Marin A et al (2011) Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genet 7. doi:10.1371/journal.pgen.1002357

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics (eds. Stackebrandt E, Goodfellow M), pp. 115–175. John Wiley and Sons, New York.

  • Mahlen SD (2011) Serratia infections: from military experiments to current practice. Clinic Microbiol Rev 24:755–791

    Article  Google Scholar 

  • McBride MJ, Braun TF (2004) GldI is a lipoprotein that is required for Flavobacterium johnsoniae gliding motility and chitin utilization. J Bacteriol 186:2295–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis- analysis of polymerase chain reaction- amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ofek T, Gal S, Inbar M, Lebiush-Mordechai S, Tsror L, Palevsky E (2014) The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings. Experimental and Applied Acarology 62 (4):437-448

  • Okabe K, Amano H (1990) Attractancy of alcohols isolated from culture filtrates of Fusarium fungi for the robine bulb mite, Rhizoglyphus robini Claprede (Acari: Acarinae) in sand. Appl Entomol Zool 25:397–404

    CAS  Google Scholar 

  • Okabe K, Amano H (1991) Penetration and population- growth of the robine bulb mite, Rhizoglyphus robini Claprede (Acari: Acaridae), on healthy and Fusarium-infected Rakkyo bulbs. Appl Entomol Zool 26:129–136

    Google Scholar 

  • Okabe K, Oconnor BM (2001) A method for both mass and individual rearing of fungivorous astigmatid mites (Acari). Exp Appl Acarol 25:493–504

    Article  CAS  PubMed  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Reichenbach H (2006) The genus Lysobacter. In: The Prokaryotes (ed) Dworkin M FS, Rosenberg E, Schleifer KH, Stackebrandt E. Springer, New York, pp 939–957

    Google Scholar 

  • Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell JA, Moreau CS, Goldman-Huertas B et al (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. P Natl Acad Sci USA 106:21236–21241

    Article  CAS  Google Scholar 

  • Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. P Natl Acad Sci USA 106:19521–19526

    Article  CAS  Google Scholar 

  • Scracia M, Pazzani C, Valentini F, Oliva M, Russo V, D’Addabbo P, Porcelli F (2016) Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae). Microbiology open 5:883–890

    Article  Google Scholar 

  • Six D (2013) The bark beetle holobiont: why microbes matter. J Chem Ecol 39:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Smrz J, Catska V (2010) Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52:33–40

    Article  Google Scholar 

  • Snyder AK, Deberry JW, Runyen-Janecky L, Rio RVM (2010) Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. P Roy Soc Lond B Bio 277:2389–2397

    Article  CAS  Google Scholar 

  • Wang H, Jin L, Zhang H (2011) Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. J Appl Microbiol 110:1390–1401

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Zhichao Y, Zheng W, Zhang H (2014) Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS One 9:e106988

    Article  PubMed  PubMed Central  Google Scholar 

  • Wooddy MW, Fashing NJ (1993) The ability of Rhizoglyphus robini Claparède (Astigmata: Acaridae) to subsist solely on a diet of filter paper. Int J Acarol 19:345–348

    Article  Google Scholar 

  • Zimmermann G, Huger AM, Langenbruch GA, Kleespies R (2016) Pathogens of the European corn borer, Ostrinia nubilalis, with special regard to the microsporidium Nosema pyrausta. J Pest Sci 89:329–346

    Article  Google Scholar 

  • Zindel R, Gottlieb Y, Aebi A (2011) Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol 48:864–872

    Article  Google Scholar 

  • Zindel R, Ofek M, Minz D, Palevsky E, Zchori-Fein E, Aebi A (2013) The bacterial community rules the nutritional ecology of its host, the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae). FASEB J 27:1488–1497

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the COST-SER project C08.0109 to AA, part of the COST Action FA0701. We would like to thank Max Kolton for help with the chitin work, Pilar Junier, Matthieu Bueche and Franco Widmer for good advice with bacterial problems and an anonymous reviewer for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Zindel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zindel, R., Ofek-Lalzar, M. & Aebi, A. Isolation of Serratia marcescens involved in chitin degradation in the bulb mite Rhizoglyphus robini . Symbiosis 73, 1–5 (2017). https://doi.org/10.1007/s13199-017-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-017-0483-6

Keywords

Navigation