Skip to main content

Advertisement

Log in

Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.)

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Zinc deficiency is a global nutritional problem in agricultural soils in large number of countries, causing decreased crop yields and grain nutritional quality. This study was conducted to investigate the effect of individual and co-inoculation of two plant-growth-promoting microorganisms (PGPMs); Azotobacter chroococcum and Piriformospora indica; on some physiological traits such as uptake of mineral nutrients, antioxidant enzyme activities, photosynthetic pigments, lipid peroxidation in leaves of wheat plants under Zn deficiency conditions. Bacterial treatment either alone or in combination with P. indica, significantly increased shoot and root biomass compared to non-inoculated controls under Zn deficiency conditions. Highest levels of Zn and P and also chlorophyll (a & b) and carotenoid concentrations were recorded in P. indica- inoculated plants both under Zn-sufficient and - deficient conditions. Individual and co-inoculation of A. chroococcum with P. indica caused a significant decrease in Fe and P concentrations in shoot compared with the control treatment. MDA (Malondialdehyde) content of inoculated plants with all microbial treatments was lower than in leaves of corresponding non-inoculated plants under Zn-deficiency conditions. Ascorbate peroxidase and peroxidase activity of inoculated plants with A. chroococcum and A. chroococcum + P. indica were higher than the other treatments under Zn-deficient conditions. Also, activity of peroxidase enzyme was induced in endophyte-inoculated plants, while ascorbate peroxidase activity was declined in such conditions. Generally, the studied microbial treatments, particularly A. chroococcum, can be proposed as a useful tool for alleviating Zn deficiency stress in sensitive plants to zinc deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

ASA:

Ascorbate

CAT:

Catalase

CFU:

Colony-forming units

CM:

Complex medium

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

GR:

Glutathione reductase

H2O2 :

Hydrogen peroxide

MDA:

Malondialdehyde

NA:

Nutrient agar

NB:

Nutrient Broth

O2 :

Superoxide ion

OH./OH :

Hydroxyl radical/ion

PBS:

Phosphate buffered saline

PGPB:

Plant growth-promoting bacteria

PGPMs:

Plant-growth-promoting microorganisms

POD:

Peroxidase

PPX:

Peroxidases like pyrogallol

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Aebi H (1984) Catalases in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (2005) Official Methods of Analysis, 18th edn. AOAC-Int, Arlington

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnon A (1967) Method of extraction of chlorophyll in the plants. Agron J 23:112–121

    Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Behl RK, Ruppel S, Kothe E, Narula N (2007) Wheat x Azotobacter x VA Mycorrhiza interactions towards plant nutrition and growth. J Appl Bot Food Qual 81:95–109

    CAS  Google Scholar 

  • Brown JC, Jones WE (1977) Fitting plants nutritionally to soils. II. Cotton. Agron J 69:405–409

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1988) Enhanced superoxide radical production in roots of zinc deficient plants. J Exp Bot 39:1449–1460

    Article  Google Scholar 

  • Cakmak I, Marschner H (1993) Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. Plant Soil 155(156):127–130

    Article  Google Scholar 

  • Cakmak I, Sari N, Marschner H, Kalayci M, Yilmaz A, Eker S, Gulut K (1996) Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:173–181

    Article  CAS  Google Scholar 

  • Cakmak I, Ekiz H, Yilmaz A, Torun B, Koleli N, Gultekin I, Alkan A, Eker S (1997) Differential response of rye, triticale, bread wheat and durum wheats to zinc deficiency in calcareous soils. Plant Soil 188:1–10

    Article  CAS  Google Scholar 

  • Cakmak I, Torun B, Erenoglu B, Ozturk L, Marschner H, Kalayci M, Ekiz H (1998) Morphological and physiological differences in cereals in response to zinc deficiency. Euphytica 100:349–357

    Article  CAS  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Chen W, Yang X, He Z, Feng Y, Hu F (2007) Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress. Physiol Plant 132:89–101

    Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini NA (2005) Review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metabol Cardiovasc Dis 15:316–328

    Article  Google Scholar 

  • Deshmukh SD, Kogel KH (2007) Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J Plant Dis Prot 114:263–268

    Article  Google Scholar 

  • Dickson S, Smith SE (1998) Evaluation of vesicular arbuscular mycorrhizal colonization by staining. In: Varma A (ed) Mycorrhiza Manual. Springer, Berlin, pp 77–84

    Chapter  Google Scholar 

  • Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Ghabooli M, Khatabi B, Shahriary Ahmadi F, Sepehri M, Mirzaei M, Amirkhani A, Jorrín-Novo JV, Hosseini Salekdeh G (2013) Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. J Proteomics 94:289–301

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Graham RD, Welch RM (1996) Breeding for staple-food crops with high micronutrient density, agricultural strategies for micronutrients, Working Pap 3. International Food Policy Research Inst, Washington, DC

    Google Scholar 

  • Gururani MA, Upadhyaya CP, Baskar V, Venkatesh J, Nookaraju A, Park SW (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Jackson TL, Hay J, Moore DP (1967) The effects of zinc on yield and chemical composition of sweet com in Willamette Valley. Am Soc Hortic Sci 91:462–471

    CAS  Google Scholar 

  • Johnson C, Stout P, Broyer TC, Carlton AB (1957) Comparative chlorine requirements of different plant species. Plant Soil 8:337–353

    Article  CAS  Google Scholar 

  • Kalayci M, Torun B, Eker S, Aydin M, Ozturk L, Cakmak I (1999) Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crop Res 63:87–98

    Article  Google Scholar 

  • Khoshgoftarmanesh AH, Shariatmadari H, Kalbasi M, Karimian N (2004) Zinc efficiency of wheat cultivars grown on a saline calcareous soil. J Plant Nutr 27:1953–1962

    Article  CAS  Google Scholar 

  • Kohler J, Hernandez JA, Fuensanta C, Antonio R (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kohler J, Jose AH, Fuensanta C, Antonio R (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kosesakal T, Unal M (2009) Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. IUFS J Biol 68:113–120

    Google Scholar 

  • Marschner H, Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London

    Google Scholar 

  • Mead JF, Wu GS, Stein RA, Gelmont D, Sevanian A, Sohlberg E (1982) Mechanism of protection against membrane peroxidation. In: Kunio Y (ed) Lipid Perox. Biol Med. Academic, London, pp 161–173

    Chapter  Google Scholar 

  • Mithöfer A, Schultze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Parker DR (1997) Responses of six crop species to solution Zn2+ activities buffered with HEDTA. Soil Sci Soc Am J 61:167–176

    Article  CAS  Google Scholar 

  • Perez-Galvez A, Minguez-Mosquera M (2002) Degradation of non-esterified and esterified xanthophylls by free radicals. BBA-Gen Subj 1569:31–34

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Waller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pryor WA, Stanley JP (1975) Letter: A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40:3615–3617

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Baljeet S, Lata N, Radha P, Yashbir SS (2012) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengel Z, Graham RD (1995) Wheat genotypes differ in zinc efficiency when grown in chelate-buffered nutrient solution. II. Nutrient uptake. Plant Soil 176:317–324

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

  • Saravanan VS, Kumar MR, Sa TM (2011) Microbial zinc solubilisation and their role on plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 47–63

    Chapter  Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmüller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sharma PN, Kumar P, Tewari RK (2004) Early signs of oxidative stress in wheat plants subjected to zinc deficiency. J Plant Nutr 27:451–463

    Article  CAS  Google Scholar 

  • Sillanp M, Vlek PLG (1985) Micronutrients and the agroecology of tropical and Mediterranean regions. Fertil Res 7:151–167

    Article  Google Scholar 

  • Stajner D, Kevresan S, Gasic O, Mimica-Dukic N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    Article  CAS  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Tayefi-Nasrabadi H, Dehghan G, Daeihassani B, Movafegi A, Samadi A (2011) Some biochemical properties of catalase from safflower (Carthamus tinctorius L. cv. M-CC-190). Afr J Agric Res 6:5221–5226

    Google Scholar 

  • Tsimilli-Michael M, Strasser RJ (2013) Biophysical phenomics: evaluation of the impact of mycorrhization with Piriformospora indica. Soil Biol 33:173–190

    Article  Google Scholar 

  • Turan M, Gulluce M, Cakmak R, Sahin F (2013) Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. J Plant Nutr 36:731–774

    Article  CAS  Google Scholar 

  • Varma A, Verma S, Sudha Sahay N, Buttehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma S, Varma A, Rexer K, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnock RE (1970) Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation to phosphorus-induced zinc deficiency. Soil Sci Soc Am J 34:765–769

    Article  CAS  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  CAS  PubMed  Google Scholar 

  • Zarea MJ, Chordia P, Varma A (2013) Piriformospora indica Versus Salt Stress. In: Varma A, Kost G, Oelmüller R (eds) Piriformospora indica. Springer, pp 263–281

  • Zarrouk O, Gogorcena Y, Gomez-Aparisi J, Betran JA, Moreno MA (2005) Influence of almond × peach hybrids root stocks on flower and leaf mineral concentration, yield, vigour of two peach cultivars. Sci Hortic 106:502–514

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang JZ, Chow WS, Sun LL, Chen JW, Chen YJ, Peng CL (2011) The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica 49:201–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by Isfahan University of Technology (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozhgan Sepehri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadi, V.A.J.M., Sepehri, M. Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.) . Symbiosis 69, 9–19 (2016). https://doi.org/10.1007/s13199-015-0361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0361-z

Keywords

Navigation