Skip to main content

Advertisement

Log in

Sex-specific asymmetry within the cloacal microbiota of the striped plateau lizard, Sceloporus virgatus

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The structure and diversity of microbial communities in wild vertebrate populations remain poorly understood, but are expected to have important consequences for individual survival and reproductive success. For instance, recent work has demonstrated that cloacal microbe assemblages of wild birds are related to the phenotypic quality of the host. To contribute to this field of study, we examined the composition and diversity of the cloacal microbiota of free-ranging striped plateau lizards, Sceloporus virgatus, using 16s rRNA-based culture independent techniques. Our dataset, generated from cloacal swabs of six males and six females, and based on twenty five 16s rRNA clones from each sample, revealed (i) low overall microbial diversity, (ii) a striking sex asymmetry in microbial community composition with males displaying cloacal microbiota more typical of gastrointestinal residents found in other organisms, while females display only gammaproteobacterial phylotypes, (iii) a significant sex difference in microbial community structure, with females having significantly lower microbial diversity and richness than do males, and (iv) that the diversity of the female microbial community is negatively correlated to her ectoparasitic mite load. It is not yet clear if the female-specific paucity of cloacal microbial diversity is due to host function or microbe-microbe interactions, or whether the relationship to female mite load is causal, however these findings are expected to have relevance to the species’ life history and ecology. Although the diversity of microbiota from humans, mice, birds, zebrafish, and invertebrates is widely investigated, this is one of only a few reports in the literature describing the cloacal microbiota of a wild vertebrate, and is perhaps the first report for wild reptiles that utilizes culture-independent techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell AJ (1998) Reproductive and post-reproductive hormone levels in the lizard Sceloporous virgatus. Acta Zool Mex 74:43–57

    Google Scholar 

  • Allen HK, Cloud-Hansen KA, Wolinski JM, Guan C, Greene S, Lu S, Boeyink M, Broderick NA, Raffa KF, Handelsman J (2009) Resident microbiota of the gypsy moth midgut harbors antibiotic resistance determinants. DNA Cell Biol. doi:10.1089/dna.2008.0812

    PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Molec Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Angenent LT, Kelley ST, St. Amand A, Pace NR, Hernandez MT (2005) Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proc Natl Acad Sci USA 102(13):4860–4865

    Article  PubMed  CAS  Google Scholar 

  • Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Baumann L, Lau CY, Rouhbakhsh D, Moran NA, Clark MA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Ann Rev Microbiol 49:55–94

    Article  CAS  Google Scholar 

  • Becker MH, Brucker RM, Scwantes CR, Harris RN, Minbiole KP (2009) The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol 75:6635–6638

    Article  PubMed  CAS  Google Scholar 

  • Borlee BR, Geske GD, Robinson CJ, Robinson CJ, Blackwell HE, Handelsman J (2008) Quorum sensing signals in the microbial community of the cabbage white butterfly larval midgut. ISME J 2:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300

    Article  PubMed  CAS  Google Scholar 

  • Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science. doi:10.1126/science.1177486

    Google Scholar 

  • Espinosa-Aviles D, Salomon-Soto VM, Morales-Martinez S (2008) Hematology, blood chemistry, and bacteriology of the free ranging mexican beaded lizard (Heloderma horridum). J Zoo Wildl Med 39:21–27

    Article  PubMed  Google Scholar 

  • Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 105:17994–17999

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Hooper LV, Bry L, Falk PG, Gordon JI (1998) Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays 20:336–343

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture independent studies on the emerging phylogenetics view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Hamady M, Lozupoine C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401

    Article  PubMed  CAS  Google Scholar 

  • Lombardo MP, Thorpe PA, Cichewicz R, Henshaw M, Millard C, Steen C, Zeller TK (1996) Communities of cloacal bacteria in tree swallow families. Condor 98:167–172

    Article  Google Scholar 

  • Lombardo MP, Thorpe PA, Power HW (1998) The beneficial sexually transmitted microbe hypothesis of avian copulation. Behav Ecol 10:333–350

    Article  Google Scholar 

  • Lucas FS, Heeb P (2005) Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit Parus caerulus nestlings. J Avian Biol 36:510–516

    Article  Google Scholar 

  • Ma R, Wu X, Jiang H, Pan J, Zhu J, Wang C (2008) Identification of cloaca bacteria from candidate releasing Chinese alligators. Zoo Res 29:253–259

    Article  Google Scholar 

  • Martel A, Pasmans F, Hellebuyck T, Haesebrouck F, Vandamme P (2008) Devrisea agamarum gen. nov., sp. nov., a novel actinobacterium associated with dermatitis and septicaemia in agamid lizards. Int J Syst Evol Microbiol 58:2206–2209

    Article  PubMed  CAS  Google Scholar 

  • McFall-Ngai MJ, Henderson B, Ruby EG (eds) (2005) The influence of cooperative bacteria on animal host biology. Cambridge University Press, New York

    Google Scholar 

  • McFall-Ngai M (2008) Are biologists in ‘future shock’? Symbiosis integrates biology across domains. Nat Rev Microbiol 6:789–792

    Article  PubMed  CAS  Google Scholar 

  • Meade GC (1997) Bacteria in the gastrointestinal tract of birds. In: Mackie RI, White BA, Isaacson RE (eds) Gastrointestinal microbiology. Chapman and Hall, New York

    Google Scholar 

  • Mills TK, Lombardo MP, Thorpe PA (1999) Microbial colonization of the cloacae of nestling tree swallows. The Auk 116:947–956

    Google Scholar 

  • Moreno J, Briones V, Merino S, Ballesteros C, Sanz JJ, Tomas G (2003) Beneficial effects of cloacal bacteria on growth and fledgling size in nestling pied flycatchers (Ficedula hypoleuca) in Spain. Auk 120:784–790

    Article  Google Scholar 

  • Peterson DA, McNulty NP, Guruge JL, Gordon JI (2007) IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2:328–339

    Article  PubMed  CAS  Google Scholar 

  • Phillott AD, Paramenter CJ, Limpus CJ, Harrower KM (2002) Mycobiota as acute and chronic cloacal contaminants of female sea turtles. Austral J Zool 50:687–695

    Article  Google Scholar 

  • Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101:4596–4601

    Article  PubMed  CAS  Google Scholar 

  • Relman DA (2008) ‘Til death do us part’: coming to terms with symbiotic relationships. Nat Rev Microbiol 6:721–724

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Rodriguez M, Soler JJ, Lucas FS, Heeb P, Palacios MJ, Martin-Galvez D, de Neve L, Perez-Contreras T, Martinez JG, Soler M (2009) Bacterial diversity at the cloaca relates to an immune response in magpie Pica pica and to body condition of great spotted cuckoo Clamator glandarius nestlings. J Avian Biol 40:42–48

    Article  Google Scholar 

  • Scupham AJ, Patton TG, Bent E, Bayles DO (2008) Comparison of the cecal microbiota of domestic and wild turkeys. Microb Ecol 56:322–331

    Article  PubMed  Google Scholar 

  • Shawkey MD, Mills KL, Dale C, Hill GE (2005) Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb Ecol 50:40–47

    Article  PubMed  Google Scholar 

  • Trauth SE, Cooper WE Jr, Vitt LJ, Perrill SA (1987) Cloacal anatomy of the broad-headed skink, Eumeces laticeps, with a description of the a female pheromonal gland. Herpetologica 43:458–466

    Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  PubMed  CAS  Google Scholar 

  • Visick KL, Ruby EG (2006) Vibrio fischeri and its host: it takes two to tango. Curr Opin Microbiol 9:632–638

    Article  PubMed  CAS  Google Scholar 

  • Weiss SL (2002) Reproductive signals of female lizards: pattern of trait expression and male response. Ethology 108:793–813

    Article  Google Scholar 

  • Weiss SL (2006) Female specific color is a signal of quality in the striped plateau lizard (Sceloporus virgatus). Behav Ecol. 17:726-732. doi:10.1093/beheco/arl00

    Google Scholar 

  • Weiss SL, Kennedy EA, Bernhard JA (2009) Female-specific ornamentation predicts offspring quality in the striped plateau lizard, Sceloporus virgatus. Behav Ecol 20:1063–1071

    Article  Google Scholar 

  • Williams PA, Mitchell W, Wilson GR, Weldon PJ (1990) Bacteria in the gular and paracloacal glands of the American alligator (Alligator mississippiensis; Reptilia, Crocodilia). Ltr Appl Microbiol 10:73–76

    Article  Google Scholar 

  • Wright SAI, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. App Environ Microbiol 67:284–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Generous support for this research was provided by start up funds from the University of Puget Sound (M.O.M. and S.L.W.), the University Enrichment Committee of the University of Puget Sound (to M.O.M.), the NASA Motivating Undergraduates in Science and Technology program (MUST) (to F.R.G), and the Murdock Charitable Trust (to S.L.W.). Support was received from Rachel Hood and Michal Morrison at the University of Puget Sound and from the staff of the American Museum of Natural History’s Southwestern Research Station. Patient advice regarding plotting of phylotype data was courtesy of Brian Jacobs. Finally, we thank Min Young Chun, Matt Dubin, and Sandy Olenic for their help collecting lizards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Martin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 654 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M.O., Gilman, F.R. & Weiss, S.L. Sex-specific asymmetry within the cloacal microbiota of the striped plateau lizard, Sceloporus virgatus . Symbiosis 51, 97–105 (2010). https://doi.org/10.1007/s13199-010-0078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0078-y

Keywords

Navigation