Skip to main content
Log in

Ultrasonic microwave-assisted extraction coupled with macroporous resin chromatography for the purification of antioxidant phenolics from waste jackfruit (Artocarpus heterophyllus Lam.) peels

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

An efficient ultrasonic microwave-assisted extraction (UMAE) coupled with macroporous resin chromatography technique was successfully used for the extraction and purification of antioxidant phenolics from jackfruit by-products (peels). After optimization by single factor experiments and response surface methodology, the optimum extraction conditions for UMAE were: ethanol concentration 63%, solvent-to-solid ratio 34 mL/g, microwave power 160 W and irradiation time 20 min. Under the optimal condition, the phenolics extraction yield was 8.14 mg GAE/g DW. After the purification by macroporous resin AB-8, the purity of antioxidant phenolics from UMAE extracts improved from 13.59 to 49.07%. Furthermore, ABTS radical scavenging activities were also significantly increased from 35.95 ± 2.21 to 162.36 ± 10.26 mg TE/g. HPLC analysis revealed that gallic acid, chlorogenic acid, and catechin were three dominant antioxidant phenolics in jackfruit peels. All of the results demonstrated that waste jackfruit peels could be utilized as a good source of phenolics with strong antioxidant activities in food and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad J, Langrish T (2012) Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: the importance of the Maillard reaction. J Food Eng 109:162–174

    Article  CAS  Google Scholar 

  • Altemimi A, Choudhary R, Watson DG, Lightfoot DA (2015) Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrason Sonochem 24:247–255

    Article  CAS  PubMed  Google Scholar 

  • Alves MJ, Ferreira ICFR, Froufe HJC, Abreu RMV, Martins A, Pintado M (2013) Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J Appl Microbiol 115:346–357

    Article  CAS  PubMed  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  • Dahmoune F, Nayak B, Moussi K, Remini H, Madani K (2015) Optimization of microwave-assited extraction of phenolics from Myrtuscommunis L. leaves. Food Chem 166:585–595

    Article  CAS  PubMed  Google Scholar 

  • de Faria AF, de Rosso VV, Mercadante AZ (2009) Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC − PDA − MS/MS. Plant Foods Hum Nutr 64:108–115

    Article  CAS  PubMed  Google Scholar 

  • Fan T, Hu J, Fu L, Zhang LJ (2015) Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology. Carbohydr Polym 115:701–706

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Luo Z, Tao B, Chen C (2015) Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds. LWT Food Sci Technol 60:970–976

    Article  CAS  Google Scholar 

  • Firatligil-Durmus E, Evranuz O (2010) Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT Food Sci Technol 43:226–231

    Article  CAS  Google Scholar 

  • He ZY, Xia WS (2008) Preparative separation and purification of phenolic compounds from Canarium album L. by macroporous resins. J Sci Food Agric 88:493–498

    Article  CAS  Google Scholar 

  • Hsu CL, Fang SC, Yen GC (2013) Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food Funct 4:1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Ji YB, Dong F, Ma DB, Miao J, Jin LN, Liu ZF, Zhang LW (2012) Optimizing the extraction of anti-tumor polysaccharides from the fruit of Capparis spionosa L. by response surface methodology. Moolecules 17:7323–7335

    Article  CAS  Google Scholar 

  • Karabegović IT, Stojičević SS, Veličković DT, Nikolić NČ, Lazić ML (2013) Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Sep Purif Technol 120:429–436

    Article  CAS  Google Scholar 

  • Lin LZ, Zhao HF, Dong Y, Yang B, Zhao MM (2012) Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra (MAXIM.) HARA leaf. Food Chem 130:417–424

    Article  CAS  Google Scholar 

  • Liu Y, Wei SL, Liao MC (2013) Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Ind Crops Prod 49:837–843

    Article  CAS  Google Scholar 

  • Liu X, Hu Y, Wei DF (2014) Optimization of enzyme-based ultrasonic/microwave-assisted extraction and evaluation of antioxidant activity of orcinol glucoside from the rhizomes of Curculigo orchioides Gaertn. Med Chem Res 23:2360–2367

    Article  CAS  Google Scholar 

  • Lou ZX, Wang HX, Zhu S, Chen SW, Zhang M, Wang ZP (2012) Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves. Anal Chim Acta 716:28–33

    Article  CAS  PubMed  Google Scholar 

  • Lu CX, Wang HX, Lv WP, Ma CY, Xu P, Zhu J, Xie J, Liu B, Zhou QL (2011) Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC for the determination of anthraquinones in Rhubarb. Chromatographia 74:139–144

    Article  CAS  Google Scholar 

  • Mocan A, Vlase L, Vodnar DC, Bischin C, Hanganu D, Gheldiu AM, Oprean R, Silaghi-Dumitrescu R, Crisan G (2014) Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. Leaves. Molecules 19:10056–10073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pongmalai P, Devahastin S, Chiewchan N, Soponronnarit S (2015) Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pretreatment. Sep Purif Technol 144:37–45

    Article  CAS  Google Scholar 

  • Shyamalamma S, Chandra SBC, Hegde M, Naryanswamy P (2008) Evaluation of genetic diversity in jackfruit (Artocarpus heterophyllus Lam.) based on amplified fragment length polymorphism markers. Genet Mol Res 7:645–656

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xu W, Zhang W, Hu Q, Zeng X (2011) Optimizing the extraction of phenolic antioxidants from kudingcha made from Ilex Kudingcha C. J. Tseng by using response surface methodology. Sep Purif Technol 78:311–320

    Article  CAS  Google Scholar 

  • Sun PC, Liu Y, Yi YT, Li HJ, Fan P, Xia CH (2015) Preliminary enrichment and separation of chlorogenic acid from Helianthus tuberosus L. leaves extract by macroporous resins. Food Chem 168:55–62

    Article  CAS  PubMed  Google Scholar 

  • Swami SB, Thakor NJ, Haldankar PM, Kalse SB (2012) Jackfruit and its many functional components as related to human health: a review. Compr Rev Food Sci Food Saf 11:565–576

    Article  CAS  Google Scholar 

  • Wang C, Shi L, Fan L, Ding Y, Zhao S, Liu Y, Ma C (2013) Optimization of extraction and enrichment of phenolics from pomegranate (Punica granatum L.) leaves. Ind Crops Prod 42:587–594

    Article  CAS  Google Scholar 

  • Wu DM, Gao TT, Yang HS, Du YZ, Li C, Wei LX, Zhou TY, Lu JM, Bi HT (2015) Simultaneous microwave/ultrasonic-assisted enzymatic extraction of antioxidant ingredients from Nitraria tangutorun Bobr. juice by-products. Ind Crops Prod 66:229–238

    Article  CAS  Google Scholar 

  • Xiao XH, Si XX, Tong X, Li GK (2012) Ultrasonic microwave-assisted extraction coupled with high-speed counter-current chromatography for the preparation of nigakinones from Picrasma quassioides (D. Don) Benn. Phytochem Anal 23:540–546

    Article  CAS  PubMed  Google Scholar 

  • Zhang LF, Liu ZL (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737

    Article  CAS  Google Scholar 

  • Zou YF, Chen XF, Yang WY, Liu S (2011) Response surface methodology for optimization of the ultrasonic extraction of polysaccharides from Codonopsis pilosula Nannf. Var. modesta L. T. Shen. Carbohydr Polym 84:503–508

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Natural Science Foundation of Hainan Province of China (318MS013), and Scientific Research Project of Hainan Provincial Universities of China (Hnky2015ZD-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Shi, R., Chen, H. et al. Ultrasonic microwave-assisted extraction coupled with macroporous resin chromatography for the purification of antioxidant phenolics from waste jackfruit (Artocarpus heterophyllus Lam.) peels. J Food Sci Technol 56, 3877–3886 (2019). https://doi.org/10.1007/s13197-019-03858-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03858-8

Keywords

Navigation