Skip to main content

Advertisement

Log in

Iron (II)-chelating activity of buffalo αS-casein hydrolysed by corolase PP, alcalase and flavourzyme

  • Short Communication
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Iron is a vital substance for human health which participates in many biochemical reactions. It also act as initiator for many harmful oxidative process. Buffalo αS-casein enriched fraction (80 %) was hydrolysed independently by corolase PP (H1), alcalase (H2), flavourzyme (H3) and sequentially by alcalase-flavourzyme (H4). After ultrafiltration (10 and 3 kDa) hydrolysates were analysed for their iron chelation activity using ferrozine. For H1 group of hydrolysates highest iron (II)-chelation activity (265.58 μM Fe2+/mg protein) was found after 8 h of hydrolysis for H2 (267.56 μM Fe2+/mg protein) and H3 group of hydrolysates (380.68 μM Fe2+/mg protein) after 6 h of hydrolysis. Sequential hydrolysis was not effective for iron (II)-chelation activity. 3 kDa fractions show higher iron (II)-chelation activity than 10 kDa fraction. Flavourzyme was more effective for generation of iron (II)-chelating peptides from buffalo αS-casein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Andrews AT (1983) Proteinases in normal bovine milk and their action on caseins. J Dairy Res 50(01):45–55

    Article  CAS  Google Scholar 

  • Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131(2):568S–580S

    CAS  Google Scholar 

  • Berner L, Miller D (1985) Effects of dietary proteins on iron bioavailability-a review. Food Chem 18(1):47–69

    Article  CAS  Google Scholar 

  • Bouhallab S, Bouglé D (2004) Biopeptides of milk: caseinophosphopeptides and mineral bioavailability. Reprod Nutr Dev 44(5):493–498

    Article  CAS  Google Scholar 

  • Burr R (2001) Protein purification from milk. In: Roe S (ed) Protein purification applications: a practical approach, 2nd edn. Oxford University Press, UK, pp 87–115

    Google Scholar 

  • Carter P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40(2):450–458

    Article  CAS  Google Scholar 

  • Chung YC, Chang CT, Chao WW, Lin CF, Chou ST (2002) Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 50(8):2454–2458

  • Church FC, Porter DH, Catignani GL, Swaisgood HE (1985) An o-phthalaldehyde spectrophotometric assay for proteinases. Anal Biochem 146(2):343–348

    Article  CAS  Google Scholar 

  • Corrêa APF et al (2011) Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. J Sci Food Agric 91(12):2247–2254

  • Cross K, Huq N, Reynolds E (2007) Casein phosphopeptides in oral health-chemistry and clinical applications. Curr Pharm Des 13(8):793–800

    Article  CAS  Google Scholar 

  • D’Ambrosio C et al (2008) A proteomic characterization of water buffalo milk fractions describing PTM of major species and the identification of minor components involved in nutrient delivery and defense against pathogens. Proteomics 8(17):3657–3666

    Article  Google Scholar 

  • De la Hoz L et al (2014) Iron-binding properties of sugar cane yeast peptides. Food Chem 142:166–169

    Article  Google Scholar 

  • Doucet D, Otter DE, Gauthier SF, Foegeding EA (2003) Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: peptide identification and determination of enzyme specificity. J Agric Food Chem 51(21):6300–6308

  • El-Salam MHA, El-Shibiny S (2011) A comprehensive review on the composition and properties of buffalo milk. Dairy Sci Technol 91(6):663–699

    Article  Google Scholar 

  • Farooq I, Moheet IA, Imran Z, Farooq U (2013) A review of novel dental caries preventive material: casein phosphopeptide–amorphous calcium phosphate (CPP–ACP) complex. King Saud Univ J Dental Sci 4(2):47–51

    Article  Google Scholar 

  • Ferranti P et al (1998) The primary structure of water buffalo αS1-and β-casein: Identification of phosphorylation sites and characterization of a novel β-casein variant. J Protein Chem 17(8):835–844

  • Fidler MC, Davidsson L, Walczyk T, Hurrell RF (2003) Iron absorption from fish sauce and soy sauce fortified with sodium iron EDTA. Am J Clin Nutr 78(2):274–278

    CAS  Google Scholar 

  • Glahn RP, Van Campen DR (1997) Iron uptake is enhanced in Caco-2 cell monolayers by cysteine and reduced cysteinyl glycine. J Nutr 127(4):642–647

    CAS  Google Scholar 

  • Guo L et al (2013) Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochem 48(5):988–993

    Article  CAS  Google Scholar 

  • Guo L et al (2014) Food protein-derived chelating peptides: biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci Technol 37(2):92–105

    Article  CAS  Google Scholar 

  • Huang G, Ren Z, Jiang J (2011) Separation of iron-binding peptides from shrimp processing by-products hydrolysates. Food Bioprocess Technol 4(8):1527–1532

    Article  CAS  Google Scholar 

  • Hurrell R (2002) How to ensure adequate iron absorption from iron‐fortified food. Nutr Rev 60(s7):S7–S15

    Article  Google Scholar 

  • Keller JL, Lanou AJ, Barnard ND (2002) The consumer cost of calcium from food and supplements. J Am Diet Assoc 102(11):1669–1671

    Article  Google Scholar 

  • Kim SB, Seo IS, Khan MA et al (2007a) Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions. J Dairy Sci 90(9):4033–4042

    Article  CAS  Google Scholar 

  • Kim SB, Seo IS, Khan MA, Ki KS, Nam MS, Kim HS (2007b) Separation of iron-binding protein from whey through enzymatic hydrolysis. Int Dairy J 17(6):625–631

    Article  CAS  Google Scholar 

  • Kitts D (2005) Antioxidant properties of casein-phosphopeptides. Trends Food Sci Technol 16(12):549–554

    Article  CAS  Google Scholar 

  • Kumagai H, Koizumi A, Suda A, Sato N, Sakurai H, Kumagai H (2004) Enhanced calcium absorption in the small intestine by a phytate-removed deamidated soybean globulin preparation. Biosci Biotechnol Biochem 68(7):1598–1600

    Article  CAS  Google Scholar 

  • Lee SH, Song KB (2009) Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochem 44(3):378–381

    Article  CAS  Google Scholar 

  • Li D, Zhao XH (2011) Glutaminase‐induced deamidation and hydrolysis of casein and metal‐chelating or ACE‐inhibitory activity of the hydrolysates in vitro. Int J Food Sci Technol 46(2):324–332

    Article  CAS  Google Scholar 

  • Li Z et al (2013) Purification and identification of five novel antioxidant peptides from goat milk casein hydrolysates. J Dairy Sci 96(7):4242–4251

    Article  CAS  Google Scholar 

  • Lopez MAA, Martos FC (2004) Iron availability: an updated review. Int J Food Sci Nutr 55(8):597–606

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Luo Y, Pan K, Zhong Q (2014) Physical, chemical and biochemical properties of casein hydrolyzed by three proteases: partial characterizations. Food Chem 155:146–154

    Article  CAS  Google Scholar 

  • Lv Y et al (2009) Identification and characteristics of iron-chelating peptides from soybean protein hydrolysates using IMAC-Fe3+. J Agric Food Chem 57(11):4593–4597

    Article  CAS  Google Scholar 

  • Megías C et al (2007) Affinity purification of copper chelating peptides from chickpea protein hydrolysates. J Agric Food Chem 55(10):3949–3954

    Article  Google Scholar 

  • Miquel E, Farré R (2007) Effects and future trends of casein phosphopeptides on zinc bioavailability. Trends Food Sci Technol 18(3):139–143

    Article  CAS  Google Scholar 

  • Nielsen P, Petersen D, Dambmann C (2001) Improved method for determining food protein degree of hydrolysis. J Food Sci 66(5):642–646

    Article  CAS  Google Scholar 

  • Pedroche J et al (2002) Utilisation of chickpea protein isolates for production of peptides with angiotensin I‐converting enzyme (ACE) ‐inhibitory activity. J Sci Food Agric 82(9):960–965

    Article  CAS  Google Scholar 

  • Poitou Bernert C et al (2007) Nutritional deficiency after gastric bypass: diagnosis, prevention and treatment. Diabetes Metab 33(1):13–24

    Article  CAS  Google Scholar 

  • Rival SG, Boeriu CG, Wichers HJ (2001) Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J Agric Food Chem 49(1):295–302

    Article  CAS  Google Scholar 

  • Sakamoto LM et al (2012) Iron peptide complex does not increase blood iron concentration at the same extent as ferrous sulfate after oral ingestion in healthy adult males. J Nutrol 4(6):87–92

    Google Scholar 

  • Seth A, Mahoney RR (2001) Iron chelation by digests of insoluble chicken muscle protein: the role of histidine residues. J Sci Food Agric 81(2):183–187

    Article  CAS  Google Scholar 

  • Shenkin A (2008) Basics in clinical nutrition: physiological function and deficiency states of trace elements. E Spen Eur E J Clin Nutr Metab 3(6):255–258

    Article  Google Scholar 

  • Storcksdieck S, Bonsmann G, Hurrell R (2007) Iron‐binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J Food Sci 72(1):S019–S029

    Article  Google Scholar 

  • Sukla S et al (2007) Molecular cloning and characterization of buffalo αS1-casein gene. Mitochondrial DNA 18(5):334–340

    CAS  Google Scholar 

  • Tauzin J, Miclo L, Roth S, Mollé D, Gaillard JL (2003) Tryptic hydrolysis of bovine αS2-casein: identification and release kinetics of peptides. Int Dairy J 13(1):15–27

  • Tay EL et al (2011) Replacement therapy for iron deficiency improves exercise capacity and quality of life in patients with cyanotic congenital heart disease and/or the Eisenmenger syndrome. Int J Cardiol 51(3):307–312

    Article  Google Scholar 

  • Torres-Fuentes C, Alaiz M, Vioque J (2011) Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chem 129(2):485–490

    Article  CAS  Google Scholar 

  • Torres-Fuentes C, Alaiz M, Vioque J (2012) Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem 134(3):1585–1588

    Article  CAS  Google Scholar 

  • Van Campen D (1973) Enhancement of iron absorption from ligated segments of rat intestine by histidine, cysteine, and lysine: effects of removing ionizing groups and of stereoisomerism. J Nutr 103:139–142

  • van der Ven C, Gruppen H, de Bont D, Voragen AG (2002) Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. Int Dairy J 12(10):813–820

    Article  Google Scholar 

  • Wang X et al (2011) Preparation and characteristics of yak casein hydrolysate-iron complex. Int J Food Sci Technol 46(8):1705–1710

    Article  CAS  Google Scholar 

  • Wang C, Li B, Ao J (2012) Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS. Food Chem 134(10):1231–1238

    Article  CAS  Google Scholar 

  • Wangoh J, Farah Z, Puhan Z (1998) Iso-electric focusing of camel milk proteins. Int Dairy J 8(7):617–621

    Article  CAS  Google Scholar 

  • Wu H, Liu Z, Zhao Y, Zeng M (2012) Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Res Int 48(2):435–441

    Article  CAS  Google Scholar 

  • Xia Y, Bamdad F, Gänzle M, Chen L (2012) Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chem 134(3):1509–1518

    Article  CAS  Google Scholar 

  • Zachariou M, Hearn MT (1996) Application of immobilized metal ion chelate complexes as pseudocation exchange adsorbents for protein separation. Biochemistry 35(1):202–211

    Article  CAS  Google Scholar 

  • Zambrowicz A, Pokora M, Eckert E, Szołtysik M, Dąbrowska A, Chrzanowska J, Trziszka T (2012) Antioxidant and antimicrobial activity of lecithin free egg yolk protein preparation hydrolysates obtained with digestive enzymes. Funct Foods Health Dis 2(12):487–500

    CAS  Google Scholar 

  • Zhang M, Mu TH, Wang YB, Sun MJ (2012) Evaluation of free radical‐scavenging activities of sweet potato protein and its hydrolysates as affected by single and combination of enzyme systems. Int J Food Sci Technol 47(4):696–702

    Article  Google Scholar 

  • Zittle C, Custer J (1963) Purification and Some of the Properties of αs-casein and κ-casein. J Dairy Sci 46(11):1183–1188

Download references

Acknowledgments

We are thankful to our Director, Vice Chancellor of National Dairy Research Institute (Deemed University), Karnal, Haryana for providing facilities and encouragement. We also thank to Novozymes South Asia Pvt Ltd, Bangalore and AB enzymes for their gifted enzymes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Jaiswal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, A., Bajaj, R., Mann, B. et al. Iron (II)-chelating activity of buffalo αS-casein hydrolysed by corolase PP, alcalase and flavourzyme. J Food Sci Technol 52, 3911–3918 (2015). https://doi.org/10.1007/s13197-014-1626-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1626-x

Keywords

Navigation