Skip to main content
Log in

Antioxidants and antioxidant enzymes status of rats fed on n-3 PUFA rich Garden cress (Lepidium Sativum L) seed oil and its blended oils

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Garden cress (Lepidium sativum L) seed oil (GCO) is a rich source of α-linolenic acid (ALA, 33.6 %) and the oil has a fairly balanced SFA, MUFA and PUFA ratio. In this study we have investigated the effect of GCO and its blends with n-6 PUFA rich edible vegetable oils sunflower oil (SFO), rice bran oil (RBO) and sesame oil (SESO) on antioxidant status of oils and antioxidative enzymes in Wistar rats. Physical blending of GCO with n-6 PUFA rich vegetable oils (SFO, RBO and SESO) increased content of natural antioxidants such as tocopherols, oryzanol and lignans, decreased the n-6/n-3 PUFA ratio and improved the radical scavenging activity of blended oils. Dietary feeding of GCO and its blended oils for 60 days, increased the tocopherols levels (12.2–21.6 %) and activity of antioxidant enzymes namely catalase, glutathione peroxidase (GPx), but did not affect the activity of glutathione reductase (GR), superoxide dismutase (SOD) and glutathione S-transferase (GST) in liver compared to native oil fed rats. Thus, blending of GCO with other vegetable oil decreased n-6/n-3 PUFA ratio (>2.0) and dietary feeding of GCO blended oils increased the antioxidant status and activity of antioxidant enzymes (catalase and GPx) in experimental rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Bhatnagar AS, Prasanth Kumar PK, Hemavathy J, GopalaKrishna AG (2009) Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. J Am Oil Chem Soc 86:991–999

    Article  CAS  Google Scholar 

  • Calder PC (2004) n-3 Fatty acids and cardiovascular disease, evidence explained and mechanisms explored. Clin Sci 107:1–11

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervick FT, Dryle DD (1985) Glutathione reductase. Methods Enzymol 113:489–490

    Google Scholar 

  • Chautan M, Calaf R, Leonard J, Charbonnier M, Andre M, Portugal H, Pauli AM, Lafont H, Nalbone G (1990) Inverse modifications of heart and liver-tocopherol status by various dietary n-6/n-3 polyunsaturated fatty acid ratios. J Lipid Res 31:2201–2208

    CAS  Google Scholar 

  • Chen LC, Boissonneault G, Hayek MG, Chow CK (1993) Dietary fat effects on hepatic lipid peroxidation and enzymes of H2O2 metabolism and NADPH generation. Lipids 28:657–662

    Article  CAS  Google Scholar 

  • Cooper AJ, Kristal BS (1997) Multiple roles of glutathione in the central nervous system. J Biol Chem 378:793

    CAS  Google Scholar 

  • Costabile R, Hili CS, Melino M, Easton C, Ferrante A (2005) The immunomodulatory effect of novel beta-oxa, beta-thia and gamma-thia polyunsaturated fatty acids on human T lymphocyte proliferation, cytokine production and activation of protein kinase C and MAPKs. J Immunol 174:233–2343

    Article  CAS  Google Scholar 

  • Diwakar BT, Dutta PK, Lokesh BR, Naidu KA (2010) Physicochemical properties of garden cress (Lepidiumsativum L.) seed oil. J Am Oil Chem Soc 87:539–548

    Article  CAS  Google Scholar 

  • Floche L, Gunzler WA (1984) Assays of glutathione peroxidase in. Methods Enzymol 105:115–121

    Google Scholar 

  • Fritsche KI, Johnston PV (1988) Rapid autooxidation of fish oil in diets without added antioxidants. J Nutr 118:425–426

    CAS  Google Scholar 

  • Gopalakrishna AG, Hemakumar KH, Khatoon S (2006) Study on the composition of rice bran oil and its higher free fatty acids value. J Am Oil Chem Soc 83:117–120

    Article  Google Scholar 

  • GraphpadInstat Demo, [DATASET1.ISD]. http://www.graphpad.com, Graph Pad Software Inc., USA

  • Guthenberg C, Alin P, Mannervik B (1985) Glutathione transferase from rat testis. Methods Enzymol 113:507–510

    Article  CAS  Google Scholar 

  • Hemalatha S (2004) Lignans and tocopherols in Indian sesame cultivars. J Am Oil Chem Soc 81:467–470

    Article  CAS  Google Scholar 

  • Hemalatha S, Raghunath M (2004) Dietary sesame (Sesamum indicum cultivar Linn) oil inhibits iron-induced oxidative stress in rats. Brit J Nutr 92:581–587

    Article  CAS  Google Scholar 

  • Iraz M, Erdogan H, Ozyurt B, Ozugurlu F, Ozgocmen S, Fadillioglu E (2005) Omega-3 essential fatty acid supplementation and erythrocyte oxidant/antioxidant status in rats. Ann Clin Lab Sci 35:169–173

    CAS  Google Scholar 

  • Javouhey-Donzel A, Guenot L, Maupoil V, Rochette L, Roequelin G (1993) Rat vitamin E status and heart lipid peroxidation, effect of dietary alpha-linolenic acid and marine n-3 fatty acids. Lipids 28:651–655

    Article  CAS  Google Scholar 

  • Jenkinson A, Franklin MF, Whale K, Duthie GG (1999) Dietary intake of polyunsaturated fatty acids and indices of oxidative stress in human volunteers. Eur J Clin Nutr 53:528–533

    Article  Google Scholar 

  • Juliano C, Cossu M, Alamanni MC, Piu L (2005) Antioxidant activity of gamma-oryzanol, mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int J Pharm 299:146–154

    Article  CAS  Google Scholar 

  • Khanna S, Roy S, Parinandi NL, Maurer M, Sen CK (2006) Characterization of the potent neuroprotective properties of the natural vitamin E alpha tocotrienol. J Neurochem 98:1474–1486

    Article  CAS  Google Scholar 

  • Khatoon S, Gopalakrishna AG (2004) Fat soluble nutraceuticals and fatty acid composition of selected Indian rice varieties. J Am Oil Chem Soc 81:939–943

    Article  CAS  Google Scholar 

  • Liebler DC (1993) The role of metabolism in the antioxidant function of vitamin E. Crit Rev Toxicol 23:147–169

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein estimation with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mohamed HMA, Awatif II (1998) The use of sesame oil unsaponifiable matter as a natural antioxidants. Food Chem 62:3269–3276

    Article  Google Scholar 

  • Morrison WR, Smith LM (1960) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron trifluoride methanol. J Lipid Res 5:600–608

    Google Scholar 

  • Moser BR, Shah SN, Winkler-Moser JK, Vaughn SF, Evangelista RL (2009) Composition and physical properties of cress (Lepidiumsativum L.) and field pennycress (Thlaspiarvense L) oils. Ind Crop Prod 30:199–205

    Article  CAS  Google Scholar 

  • Pastore A, Piemonte F, Locatelli M, Russo AL, Gaeta LM, Tozzi G, Federici G (2001) Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clin Chem 47:1467–1469

    CAS  Google Scholar 

  • Pathasarathy S, Santanam N, Auge N (1999) Antioxidants and low density lipoprotein oxidation. In: Papas AM (ed) Antioxidant status, diet, nutrition, and health. CRC Press, Boca Raton

    Google Scholar 

  • Porter NA, Caldwell SE, Mills KA (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids 30:277–290

    Article  CAS  Google Scholar 

  • Ramadan MF, Kroh LW, Mörsel JT (2003) Radical scavenging activity of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotiaabyssinica Cass.) crude seed oils and oil fractions. J Agric Food Chem 51:6961–6969

    Article  CAS  Google Scholar 

  • Ramaprasad TR, Baskaran V, Sambaiah K, Lokesh BR (2004) Supplementation and delivery of n-3 fatty acids through spray-dried milk reduce serum and liver lipids in rats. Lipids 39:627–632

    Article  CAS  Google Scholar 

  • Rogers EJ, Rice SM, Nicolosi RJ, Carpenter DR, McClelland CA, Romanczky LJ (1993) Identification and quantification of γ-Oryzanol components and simultaneous assessment of tocols in rice bran oil. J Am Oil Chem Soc 70:301–307

    Article  CAS  Google Scholar 

  • Schmidt EB, Arnesen H, de Caterina R, Rasmussen LH, Kristensen SD (2005) Marine n-3 polyunsaturated fatty acid and coronary disease: Part I. Background, epidemiology, animal data, effects on risk factors and safety. Thromb Res 115:163–170

    Article  CAS  Google Scholar 

  • Schull S, Herntz NH, Perisamy M, Manohar M, Janssen YMW, Marsh IP, Mossman BT (1991) Differential regulation of antioxidative enzymes in response to oxidation. J Biol Chem 266:24398–24403

    Google Scholar 

  • Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463

    CAS  Google Scholar 

  • Spolarics Z, Meyenhofer M (2000) Augmented resistance to oxidative stress in fatty rat livers induced by a short-term sucrose-rich diet. Biochim Biophys Acta 1487:190–200

    Article  CAS  Google Scholar 

  • Sundram K, Nor RM (2002) Analysis of tocotrienols in different sample matrixes by HPLC. In: Oxidative stress biomarkers and antioxidant protocols. pp. 221–232. Humana Press

  • Umesha SS, Naidu KA (2012) Vegetable oil blends with α-linolenic acid rich Garden cress oil modulate lipid metabolism in experimental rats. Food Chem 135:2845–2851

    Article  CAS  Google Scholar 

  • Vamecq J, Vallee L, DeLaPorte P, Fontaine M, DeCraemer D, Van den Branden C, LaFont H, Grataroli R, Nalbone G (1993) Effects of various n-3/n-6 fatty acid ratio contents of high fat diets on rat liver and heart peroxisomal and mitochondrial superoxide dismutase in trained mice. Arch Biochem Biophys 291:147–153

    Google Scholar 

  • Venkatraman JT, Pinnavaia L (1998) Effects of saturated, ω-6 and ω-3 lipids on activities of enzymes involved in antioxidant defense in normal rats. Nutr Res 18:341–350

    Article  CAS  Google Scholar 

  • Venkatraman JT, Chandrasekar B, Kim JD, Fernandes G (1994) Effects of n-3 and n-6 fatty acids on the activities and expression on hepatic antioxidant enzymes in autoimmune-prone NZBxNZW F mice. Lipids 29:561–568

    Article  CAS  Google Scholar 

  • Kostyuk VA, Potapovich AI (1989) Superoxide driven oxidation of quercetin and a simple sensitive for determination of superoxide dismutase. Biochem Int 19:1117–1124

    CAS  Google Scholar 

  • Yagi K (1984) Assay for blood plasma or serum. Methods Enzymol 105:328–331

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. S. S. Umesha, gratefully acknowledges the Council of Scientific and Industrial Research (CSIR) New Delhi, for providing a Senior Research Fellowship. KAN acknowledges the financial support in the form of a Project (SR/SO/HS-0005/2010) awarded by Department of Science and Technology (DST), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Akhilender Naidu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umesha, S.S., Naidu, K.A. Antioxidants and antioxidant enzymes status of rats fed on n-3 PUFA rich Garden cress (Lepidium Sativum L) seed oil and its blended oils. J Food Sci Technol 52, 1993–2002 (2015). https://doi.org/10.1007/s13197-013-1196-3

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-013-1196-3

Keywords

Navigation