Skip to main content
Log in

Radial variations of electrical properties of date palm stem

  • Original Article
  • Published:
Journal of the Indian Academy of Wood Science Aims and scope Submit manuscript

Abstract

The main objective of this study was to investigate the radial variations of electrical properties of the date palm (Phoenix dactylifera L.) stem (Date palm stem: DPS) of the Marrakech region of Morocco. Moreover, Electrical Impedance Spectroscopy (EIS) method was applied on the DPS experimental samples at room temperature (20 ± 2 °C) and under frequency interval of 40 Hz to 100 kHz. Furthermore, the double-DCE (ZARC) model was used as equivalent circuit for the DPS. The electrical impedance parameters of this model such as intracellular resistance (Ri), extracellular resistances (Re1 and Re2), relaxation time (τ1 and τ2) and the distribution coefficient of the relaxation time (Ψ1 and Ψ2) for the DPS samples were determined and compared. Significant differences in the equivalent circuit parameters were found between samples from different lateral position in the DPS. Therefore, the results showed that the electrical parameters of this model (the intracellular resistance (Ri), the extracellular resistances (Re1 and Re2) and the relaxation time (τ2) decreased while the relaxation time (τ1) as well as the distribution coefficient of the relaxation time (Ψ1 and Ψ2) were constant when moving from the pith to the bark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agoudjil B, Benchabane A, Boudenne A, Ibos L, Fois M (2011) Renewable materials to reduce building heat loss: characterization of date palm wood. Energy Build 43(2–3):491–497

    Article  Google Scholar 

  • Amirou S, Zerizer A, Pizzi A (2014) Investigation of chemical, physical and mechanical properties of algerian date palm wood. Mater Test Eur J Wood Prod 56(3):236–240

    Google Scholar 

  • Bakar B, Tahir P, Karimi A, Bakar E, Uyup M, Choo AC (2013) Evaluations of some physical properties for oil palm as alternative biomass resources. Wood Mat Sci Eng 8(2):119–128

    Article  CAS  Google Scholar 

  • Benmansour N, Agoudjil B, Boudenne A (2011) Etude des performances de produits renouvelables et locaux adaptés à l’isolation thermique dans le bâtiment. XXIXe Rencontres Universitaires de Génie Civil, Tlemcen

    Google Scholar 

  • Boufass S, Hader A, Tanasehte M, Sbiaai H, Achik I, Boughaleb Y (2020) Modelling of composite materials energy by fiber bundle model. Eur Phys J Appl Phys. https://doi.org/10.1051/epjap/2020200179

    Article  Google Scholar 

  • Choo A, Tahir P, Karimi A, Bakar E, Abdan K, Ibrahim A, Feng L (2011) Density and humidity gradients in veneers of oil palm stems. Eur J Wood Wood Prod 69(3):501–503

    Article  CAS  Google Scholar 

  • Elloumi I (2016) Caractérisation des propriétés diélectriques du bois et des composites bois-polymère. Université du Québec en Abitibi-Témiscamingue, Mémoire de maîtrise, p 131

    Google Scholar 

  • Fathi L, Frühwald A (2014) The role of vascular bundles on the mechanical properties of coconut palm wood. Wood Mat Sci Eng 9(4):214–223

    Article  CAS  Google Scholar 

  • Fathi L, Bahmani M, Saadatnia MA, Poursartip L (2017) An investigation on anatomical and mechanical properties of vascular bundles in date palm (case study: Ahvaz countryside). Iran J Wood Pap Ind 8(1):109–118

    Google Scholar 

  • Fathi L, Fruehwald K, Fruehwald A (2014) The potential use of timber from palm trees for building purposes. In: Wood conference on timber engineering, Quebec

  • Fathi L (2014) Structural and mechanical properties of the wood from coconut palm, oil palms and date palms (PhD-Thesis, submitted May 2014, Univ. of Hamburg, Germany)

  • Gonzalez O.M, Gilbert B.P, Bailleres H, Guan H (2014). Compressive strength and stiffness of senile coconut palms stem green tissue. In: 23rd Australasian conference on the mechanics of structures and materials (ACMSM23), Byron Bay, Australia, ISSN: 978–0–994152–00–8, (2014) 881–886

  • Hader A, Sbiaai H, Tanasehte M, Amallah L, Boughaleb Y (2020) Scaling law in avalanche breaking of composite materials. Multidiscip Model Mater Struct. https://doi.org/10.1108/MMMS-05-2020-0111

    Article  Google Scholar 

  • Hakam A, El Imame N (2017c) Frequency response modelling of maritime pine (Pinus pinaster L.) wood at low frequencies. J Mater Environ Sci. 8(12):4362–4366

    CAS  Google Scholar 

  • Hakam A, Takam M, Chokairi M, Chantoufi NA, Hamoutahra Z, El Alami A, Famiri A, Ziani M, Gril J (2012) Effect of bark stripping on the electrical impedance of Quercus Suber leaves. Maderas Ciencia y Tecnología 14(2):195–208

    Article  CAS  Google Scholar 

  • Hakam A, Chantoufi NA, El Imame N, Guelzim M, Ziani M, Famiri A, Bakhkhat SD, Ghailane F, Hachmi M, Sesbou A, Merlin A (2017a) Dielectric properties of atlas cedar wood at its early stage of decay. Int J Pharmacogn Phytochem Res 9(3):444–448

    Google Scholar 

  • Hakam A, El Imame N, Ziani M, Famiri A, Hachmi M, Sesbou A (2017b) Electrical study of maritime pine wood in relation to blue stain. Int J Appl Eng Res 12(21):11050–11054

    Google Scholar 

  • Hakam A, Elkhal M, Ziani M, Famiri A, Fidah A (2018) Some physical properties of the date palm stem. MATEC Web Conf 149:01047

    Article  Google Scholar 

  • Killmann W (1983) Some physical properties of the coconut palm stem. Wood Sci Technol 17:167–185

    Article  Google Scholar 

  • Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin. https://doi.org/10.1007/978-3-642-56120-7

    Book  Google Scholar 

  • Lazrak C, Hakam A, Hammi M, Famiri A, Ziani M (2018) Examination of interfacial compatibility within WPC panels using electrical impedance spectroscopy. J Eng Appl Sci 13(9):2786–2790

    Google Scholar 

  • Macdonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. John Wiley & Sons Inc, New York, p 368

    Google Scholar 

  • Memsouk A, Boughaleb Y, Nassif R, Ennamiri H (2000) dynamic scaling and self-organized criticality in diffusion fronts growth. Eur Phys J B 1735:137–142

    Article  Google Scholar 

  • Rana MN, Das AK, Ashaduzzaman M (2015) Physical and mechanical properties of coconut palm (Cocos nucifera) stem. Bangladesh J Sci Ind Res 50:39–46

    Article  Google Scholar 

  • Repo T, Zhang G, Ryyppo A, Rikala R (2000) The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation. J Exp Bot 51(353):2095–2107

    Article  CAS  Google Scholar 

  • Repo T, Oksanen E, Vapaavuori E (2004) Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones. Tree Physiol 24:833–843

    Article  CAS  Google Scholar 

  • Repo T, Sutinen S, Nöjd P, Mäkinen H (2007) Implications of delayed soil frost thawing on the physiology and growth of Norway spruce. Scand J Res 22:118–127

    Article  Google Scholar 

  • Rigaud B, Morucci J-P, Chauveau N (1996) Bioelectrical impedance techniques in medicine. Part I: bioimpedance measurements. Crit Rev Biomed Eng 24:257–351

    Article  CAS  Google Scholar 

  • Standard F (1985a) NF B 51–004, wood-determination of density. AFNOR, Paris, p 5

    Google Scholar 

  • Standard F (1985b) NF B 51–005, wood-determination of density. AFNOR, Paris, p 5

    Google Scholar 

  • Tanasehte M, Hader A, Achik I, Sbiaai H, Boughaleb Y (2020a) The matrix–fiber interaction effect on the avalanche breaking in the failure process of composite materials. Phys A Stat Mech Appl 553:124223

    Article  Google Scholar 

  • Tanasehte M, Hader A, Elkhal M, Hariti Y, Sbiaai H, Boughaleb Y (2020b) The study of elastic energy in composite materials with fiber bundle model. Mater Today Proc 30:923–927. https://doi.org/10.1016/j.matpr.2020.04.351

    Article  CAS  Google Scholar 

  • Tanasehte M, Hader A, Sbiaai H, Achik I, Boughaleb Y (2020c) The effect of fibers-matrix interaction on the composite materials elongation. IOP Conf Ser Mater Sci Eng 948:12032. https://doi.org/10.1088/1757-899x/948/1/012032

    Article  Google Scholar 

  • Tarras I, Moussa N, Mazroui M, Boughaleb Y, Hajjaji A (2013) Collective behavior of interacting particles: radius-dependent phase transition. Mod Phys Lett B 27:50028

    Article  Google Scholar 

  • Tiitta M, Savolainen T, Olkkonen H, Kanko T (1999a) Wood moisture gradient analysis by electrical impedance spectroscopy. Holzforschung 53(1):68–76

    Article  CAS  Google Scholar 

  • Tiitta M, Rero T, Viitanen H (1999b) Effect of soft rot and bacteria on electrical impedance of wood at low moisture content. Material Und Organismen 33(4):261–287

    Google Scholar 

  • Touloum F, Younsi A, Kaci A, Benchabane A (2016) Formulation of a composite of date palm wood-cement. J Appl Eng Sci Technol 2(2):57–63

    Google Scholar 

  • Väinölä A, Repo T (2000) Impedance spectroscopy in frost hardiness evaluation of rhododendron leaves. Ann Bot 86(4):799–805

    Article  Google Scholar 

  • Zelinka SL, Stone DS, Rammer DR (2007) Equivalent circuit modeling of wood at 12% moisture content. Wood Fiber Sci 39(4):556–565

    CAS  Google Scholar 

  • Zelinka SL, Douglas R, Rammer DR, Stone DS (2008) Impedance spectroscopy and circuit modeling of Southern pine above 20% moisture content. Holzforschung 62(6):737–744

    Article  CAS  Google Scholar 

  • Zhu L, Cao J, Wang YJ (2013) Evaluation of interfacial compatibility in wood flour/polypropylene composite by using dielectric approach. J Appl Polym Sci 129(3):1520–1526

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tanasehte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkhal, M., Hakam, A., Ez-Zahraouy, H. et al. Radial variations of electrical properties of date palm stem. J Indian Acad Wood Sci 18, 106–115 (2021). https://doi.org/10.1007/s13196-021-00286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13196-021-00286-0

Keywords

Navigation