Skip to main content

Advertisement

Log in

Frequency of Positive Cuff Leak Test Before Extubation in Robotic Surgeries Done in Steep Trendelenburg Position

  • Original Article
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

Anaesthesia for robotic surgeries done in steep trendelenburg position are associated with risks such as facial oedema, conjunctival chemosis, raised intraocular pressure, laryngeal oedema, and delayed awakening. We proposed the use of the cuff leak test in them to record the frequency of laryngeal oedema at the end of surgery and attempted to find its correlation with probable risk factors. We conducted a prospective observational study of 100 patients aiming primarily to assess the frequency of positive cuff leak test in robotic abdominal surgeries performed in trendelenburg position. The secondary outcomes were to check its correlation with intravenous fluid administration, duration of pneumoperitoneum, and angle of trendelenburg position. We also recorded the frequency of chemosis, the frequency of post-extubation stridor in 24 h post-operatively, and the frequency of reintubation. Out of 100 participants undergoing elective abdominal robotic surgery in trendelenburg position, ninety were analysed. Total 31.6% (n = 30) participants showed positive cuff leak test. Chemosis was observed in 31 (32.6%) participants. No patient experienced post-extubation stridor or required reintubation during post-operative follow up. There was a no correlation between cuff leak test and intravenous fluid, duration of pneumo-peritoneum, or with angle of trendelenburg. The frequency of positive cuff leak test was high in patients at the end of robotic surgery but none of these patients had post-extubation stridor or required reintubations. There was no correlation with the fluid, angle, or duration of surgery. Clinical Trials Registry of India (CTRI/2017/04/008289), ctri.nic.in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee GI, Lee MR, Clanton T, Sutton E, Park AE, Marohn MR (2014) Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries. Surg Endosc 28(2):456–65. https://doi.org/10.1007/s00464-013-3213-z. Erratum in: Surg Endosc. 2015 Mar;29(3):753. Clanton, Tamera [corrected to Clanton, Tameka]

    Article  Google Scholar 

  2. Yohannes P, Rotariu P, Pinto P, Smith AD, Lee BR (2002) Comparison of robotic versus laparoscopic skills: is there a difference in the learning curve? Urology 60(1):39–45. https://doi.org/10.1016/s0090-4295(02)01717-x (discussion 45)

    Article  Google Scholar 

  3. Aggarwal R, Darzi A, Yang GZ (2010) Robotics in surgery–past, present and future. Med Sci 2

  4. Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Cohen NH, Young WL (2014) Miller’s anesthesia e-book. Elsevier Health Sciences

  5. Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng H 214(1):129–140. https://doi.org/10.1243/0954411001535309

    Article  CAS  Google Scholar 

  6. Adili A (2004) Robot-assisted orthopedic surgery. Semin Laparosc Surg 11(2):89–98. https://doi.org/10.1177/107155170401100205

    Article  Google Scholar 

  7. Hollands CM, Dixey LN (2002) Robotic-assisted esophagoesophagostomy. J Pediatr Surg 37(7):983–5. https://doi.org/10.1053/jpsu.2002.33823 (discussion 983-5)

    Article  Google Scholar 

  8. Boehm DH, Reichenspurner H, Gulbins H, Detter C, Meiser B, Brenner P, Habazettl H, Reichart B (1999) Early experience with robotic technology for coronary artery surgery. Ann Thorac Surg 68(4):1542–1546. https://doi.org/10.1016/s0003-4975(99)00955-8

    Article  CAS  Google Scholar 

  9. Hockstein NG, Nolan JP, O’malley BW Jr, Woo YJ (2005) Robotic microlaryngeal surgery: a technical feasibility study using the da Vinci surgical robot and an airway mannequin. Laryngoscope 115(5):780–5. https://doi.org/10.1097/01.MLG.0000159202.04941.67

    Article  Google Scholar 

  10. O’Malley BW Jr, Weinstein GS, Snyder W, Hockstein NG (2006) Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116(8):1465–1472. https://doi.org/10.1097/01.mlg.0000227184.90514.1a

    Article  Google Scholar 

  11. Weinstein GS, O’malley BW Jr, Hockstein NG (2005) Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope 115(7):1315–9. https://doi.org/10.1097/01.MLG.0000170848.76045.47

    Article  Google Scholar 

  12. Sharma KC, Brandstetter RD, Brensilver JM, Jung LD (1996) Cardiopulmonary physiology and pathophysiology as a consequence of laparoscopic surgery. Chest 110(3):810–815. https://doi.org/10.1378/chest.110.3.810

    Article  CAS  Google Scholar 

  13. Awad H, Santilli S, Ohr M, Roth A, Yan W, Fernandez S, Roth S, Patel V (2009) The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg 109(2):473–478. https://doi.org/10.1213/ane.0b013e3181a9098f

    Article  Google Scholar 

  14. Maerz DA, Beck LN, Sim AJ, Gainsburg DM (2017) Complications of robotic-assisted laparoscopic surgery distant from the surgical site. Br J Anaesth 118(4):492–503. https://doi.org/10.1093/bja/aex003

    Article  CAS  Google Scholar 

  15. Phong SV, Koh LK (2007) Anaesthesia for robotic-assisted radical prostatectomy: considerations for laparoscopy in the trendelenburg position. Anaesth Intensive Care 35(2):281–285. https://doi.org/10.1177/0310057X0703500221

    Article  CAS  Google Scholar 

  16. Epstein SK, Ciubotaru RL (1998) Independent effects of etiology of failure and time to reintubation on outcome for patients failing extubation. Am J Respir Crit Care Med 158(2):489–493. https://doi.org/10.1164/ajrccm.158.2.9711045

    Article  CAS  Google Scholar 

  17. Fisher MM, Raper RF (1992) The ‘cuff-leak’ test for extubation. Anaesthesia 47(1):10–12. https://doi.org/10.1111/j.1365-2044.1992.tb01943.x

    Article  CAS  Google Scholar 

  18. Sandhu RS, Pasquale MD, Miller K, Wasser TE (2000) Measurement of endotracheal tube cuff leak to predict postextubation stridor and need for reintubation. J Am Coll Surg 190(6):682–687. https://doi.org/10.1016/s1072-7515(00)00269-6

    Article  CAS  Google Scholar 

  19. De Backer D (2005) The cuff-leak test: what are we measuring? Crit Care 9(1):31–3. https://doi.org/10.1186/cc3031

    Article  Google Scholar 

  20. Miller RL, Cole RP (1996) Association between reduced cuff leak volume and postextubation stridor. Chest 110(4):1035–1040. https://doi.org/10.1378/chest.110.4.1035

    Article  CAS  Google Scholar 

  21. Chiu KL, Ryan CM, Shiota S, Ruttanaumpawan P, Arzt M, Haight JS, Chan CT, Floras JS, Bradley TD (2006) Fluid shift by lower body positive pressure increases pharyngeal resistance in healthy subjects. Am J Respir Crit Care Med 174(12):1378–1383. https://doi.org/10.1164/rccm.200607-927OC

    Article  Google Scholar 

  22. Way WL, Sooy FA (1965) Histologic changes produced by endotracheal intubation. Ann Otol Rhinol Laryngol 74(3):799–812. https://doi.org/10.1177/000348946507400318

    Article  CAS  Google Scholar 

  23. Rashkin MC, Davis T (1986) Acute complications of endotracheal intubation. Relationship to reintubation, route, urgency, and duration. Chest 89(2):165–7. https://doi.org/10.1378/chest.89.2.165

    Article  CAS  Google Scholar 

  24. Torres A, Gatell JM, Aznar E, el-Ebiary M, Puig de la Bellacasa J, González J, Ferrer M, Rodriguez-Roisin R (1995) Re-intubation increases the risk of nosocomial pneumonia in patients needing mechanical ventilation. Am J Respir Crit Care Med 152(1):137–41. https://doi.org/10.1164/ajrccm.152.1.7599812

    Article  CAS  Google Scholar 

  25. Khemani RG, Randolph A, Markovitz B (2009) Corticosteroids for the prevention and treatment of post-extubation stridor in neonates, children and adults. Cochrane Database Syst Rev 2009(3):CD001000. https://doi.org/10.1002/14651858.CD001000.pub3

    Article  Google Scholar 

  26. Lin C, Yu H, Fan H, Li Z (2014) The efficacy of noninvasive ventilation in managing postextubation respiratory failure: a meta-analysis. Heart Lung 43(2):99–104. https://doi.org/10.1016/j.hrtlng.2014.01.002

    Article  Google Scholar 

  27. Ding LW, Wang HC, Wu HD, Chang CJ, Yang PC (2006) Laryngeal ultrasound: a useful method in predicting post-extubation stridor. A pilot study Eur Respir J 27(2):384–389. https://doi.org/10.1183/09031936.06.00029605

    Article  Google Scholar 

  28. Tadié JM, Behm E, Lecuyer L, Benhmamed R, Hans S, Brasnu D, Diehl JL, Fagon JY, Guérot E (2010) Post-intubation laryngeal injuries and extubation failure: a fiberoptic endoscopic study. Intensive Care Med 36(6):991–998. https://doi.org/10.1007/s00134-010-1847-z

    Article  Google Scholar 

  29. Oksar M, Akbulut Z, Ocal H, Balbay MD, Kanbak O (2014) Anesthetic considerations for robotic cystectomy: a prospective study. Braz J Anesthesiol 64(2):109–15. https://doi.org/10.1016/j.bjane.2013.09.008

    Article  Google Scholar 

  30. Berger J, Alshaeri T, Lukula D, Dangerfield P (2013) Anesthetic considerations for robot-assisted gynecologic and urology surgery. J Anesth Clin Res 4:345

    Google Scholar 

  31. Saito J, Noguchi S, Matsumoto A, Jinushi K, Kasai T, Kudo T, Sawada M, Kimura F, Kushikata T, Hirota K (2015) Impact of robot-assisted laparoscopic prostatectomy on the management of general anesthesia: efficacy of blood withdrawal during a steep trendelenburg position. J Anesth 29(4):487–491. https://doi.org/10.1007/s00540-015-1989-9

    Article  Google Scholar 

  32. Oksar M, Akbulut Z, Ocal H, Balbay MD, Kanbak O (2014) Prostatectomia robótica: análise anestesiológica de cirurgias urológicas robóticas: estudo prospectivo [Robotic prostatectomy: the anesthetist’s view for robotic urological surgeries, a prospective study]. Rev Bras Anestesiol 64(5):307–13. Portuguese. https://doi.org/10.1016/j.bjan.2013.10.009

  33. McLarney JT, Rose GL (2011) Anesthetic implications of robotic gynecologic surgery. J Gynecol Endosc Surg 2(2):75–8. https://doi.org/10.4103/0974-1216.114077

    Article  Google Scholar 

  34. Bodkhe A, Upadhye S, Nadkarni M, Pitale C, Purohit A (2019) Robotic assisted laparoscopic prostatectomy: conjunctival edema and trendelenburg time as predictors for delayed extubation. Int J Med Sci Innov Res 4(5):229–239

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. J.V. Divatia, our Head of Department, and we are grateful to Mrs. Anjana Srivastava for trial coordination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudivya Sharma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, J.S., Sharma, S., Mehta, N. et al. Frequency of Positive Cuff Leak Test Before Extubation in Robotic Surgeries Done in Steep Trendelenburg Position. Indian J Surg Oncol 13, 896–901 (2022). https://doi.org/10.1007/s13193-022-01605-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-022-01605-8

Keywords

Navigation