Skip to main content

Advertisement

Log in

Molecular Landscape and Treatment Options for Patients with Metastatic Colorectal Cancer

  • Review Article
  • Published:
Indian Journal of Surgical Oncology Aims and scope Submit manuscript

Abstract

Over the last 20 years, median survival for patients with metastatic colorectal cancer (CRC) has remarkably improved from about 12 to over 30 months, mainly because of the development of new agents and patient selection using predictive biomarkers. However, the identification of the most effective treatment for an individual patient is still a challenge. Molecular profiling of CRC has made great progress, but it is limited by tumor heterogeneity and absence of driver mutation. However, RAS, BRAF, and microsatellite instability are validated biomarker recommended by NCCN and ESMO. In this review, we discuss recent advances and future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Loupakis F, Cremolini C, Masi G et al (2014) Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 371:1609–1618

    Article  PubMed  Google Scholar 

  2. Yamada Y, Takahari D, Matsumoto H et al (2013) Leucovorin, fluorouracil, and oxaliplatin plus bevacizumab versus S-1 and oxaliplatin plus bevacizumab in patients with metastatic colorectal cancer (SOFT): an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncol 14:1278–1286

    Article  CAS  PubMed  Google Scholar 

  3. Heinemann V, von Weikersthal LF, Decker T et al (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15:1065–1075

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  Google Scholar 

  5. Guinney J, Dienstmann R, Wang X et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21:1350–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thibodeau SN, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819

    Article  CAS  PubMed  Google Scholar 

  7. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    Article  CAS  PubMed  Google Scholar 

  8. Kane MF, Loda M, Gaida GM et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811

    CAS  PubMed  Google Scholar 

  9. Hawkins N, Norrie M, Cheong K et al (2002) CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology 122:1376–1387

    Article  CAS  PubMed  Google Scholar 

  10. Weisenberger DJ, Siegmund KD, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  CAS  PubMed  Google Scholar 

  11. Sinicrope FA, Foster NR, Thibodeau SN et al (2011) DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 103:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sargent DJ, Marsoni S, Monges G et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sargent DJ, Shi Q, Yothers G et. al (2014) Prognostic impact of deficient mismatch repair (dMMR) in 7,803 stage II/III colon cancer (CC) patients (pts): a pooled individual pt data analysis of 17 adjuvant trials in the ACCENT database. J Clin Oncol 32:5s (suppl; abstr 3507).

  14. Gavin PG, Paik S, Yothers G, Pogue-Geile KL (2013) Colon cancer mutation: prognosis/prediction--response. Clin Cancer Res 19:1301

    Article  PubMed  Google Scholar 

  15. Andre T, de Gramont A, Vernerey D et al (2015) Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 33:4176–4187

    Article  CAS  PubMed  Google Scholar 

  16. Sinicrope FA, Yoon HH, Mahoney MR et. al (2014) Overall survival result and outcomes by KRAS, BRAF, and DNA mismatch repair in relation to primary tumor site in colon cancers from a randomized trial of adjuvant chemotherapy: NCCTG (Alliance) N0147. J Clin Oncol 32:5s (suppl; abstr 3525)

  17. Lanza G, Gafa R, Santini A, Maestri I, Guerzoni L, Cavazzini L (2006) Immunohistochemical test for MLH1 and MSH2 expression predicts clinical outcome in stage II and III colorectal cancer patients. J Clin Oncol 24:2359–2367

    Article  CAS  PubMed  Google Scholar 

  18. Sinicrope FA, Rego RL, Halling KC et al (2006) Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131:729–737

    Article  CAS  PubMed  Google Scholar 

  19. Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E (2010) Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 46:2788–2798

    Article  CAS  PubMed  Google Scholar 

  20. Venderbosch S, Nagtegaal ID, Maughan TS, et al (2014) Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res 20:5322–5330

  21. Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Des Guetz G, Schischmanoff O, Nicolas P, Perret GY, Morere JF, Uzzan B (2009) Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer 45:1890–1896

    Article  CAS  PubMed  Google Scholar 

  23. Hutchins G, Southward K, Handley K et al (2011) Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 29:1261–1270

    Article  PubMed  Google Scholar 

  24. Sargent DJ, Shi Q, Yothers G et. al (2014) Prognostic impact of deficient mismatch repair (dMMR) in 7,803 stage II/III colon cancer (CC) patients (pts): a pooled individual pt data analysis of 17 adjuvant trials in the ACCENT database. J Clin Oncol 32:5s (suppl; abstr 3507)

  25. National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology: colon cancer. Version II. 2016.

  26. Zaanan A, Flejou JF, Emile JF et al (2011) Defective mismatch repair status as a prognostic biomarker of disease-free survival in stage III colon cancer patients treated with adjuvant FOLFOX chemotherapy. Clin Cancer Res 17:7470–7478

    Article  CAS  PubMed  Google Scholar 

  27. Zaanan A, Cuilliere-Dartigues P, Guilloux A et al (2010) Impact of p53 expression and microsatellite instability on stage III colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin. Ann Oncol 21:772–780

    Article  CAS  PubMed  Google Scholar 

  28. Kim ST, Lee J, Park SH et al (2010) Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy. Cancer Chemother Pharmacol 66:659–667

    Article  CAS  PubMed  Google Scholar 

  29. Le DT, Uram JN, Wang H et al (2015) PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Llosa NJ, Cruise M, Tam A et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43–51

    Article  CAS  PubMed  Google Scholar 

  31. Dudley JC, Lin MT, Le DT, Eshleman JR (2016) Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin Cancer Res 22:813–820

    Article  CAS  PubMed  Google Scholar 

  32. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  CAS  PubMed  Google Scholar 

  33. Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  CAS  PubMed  Google Scholar 

  34. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489

    Article  CAS  PubMed  Google Scholar 

  35. Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  36. Lievre A, Bachet JB, Le Corre D et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66:3992–3995

    Article  CAS  PubMed  Google Scholar 

  37. Loupakis F, Ruzzo A, Cremolini C et al (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Douillard JY, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369:1023–1034

    Article  CAS  PubMed  Google Scholar 

  39. De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762

    Article  PubMed  Google Scholar 

  40. Sorich MJ, Wiese MD, Rowland A, Kichenadasse G, McKinnon RA, Karapetis CS (2015) Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials. Ann Oncol 26:13–21

    Article  CAS  PubMed  Google Scholar 

  41. Bokemeyer C, Kohne CH, Ciardiello F et al (2015) FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer. Eur J Cancer 51:1243–1252

    Article  CAS  PubMed  Google Scholar 

  42. Van Cutsem E, Lenz HJ, Kohne CH et al (2015) Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 33:692–700

    Article  PubMed  Google Scholar 

  43. Schwartzberg LS, Rivera F, Karthaus M et al (2014) PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 32:2240–2247

    Article  CAS  PubMed  Google Scholar 

  44. Lenz HJ, Niedzwiecki D, Innocenti F et. al (2014) CALGB/SWOG 80405: phase III trial of FOLFIRI or mFOLFOX6 with bevacizumab or cetuximab for patients with expanded RAS analyses in untreated metastatic adenocarcinoma of the colon or rectum. Ann Oncol 25 (suppl 4; abstr 5010)

  45. Allegra CJ, Rumble RB, Hamilton SR, Mangu PB, Roach N, Hantel A, Schilsky RL (2016) Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J Clin Oncol 34:179–185

    Article  CAS  PubMed  Google Scholar 

  46. Ren J, Li G, Ge J, Li X, Zhao Y (2012) Is K-ras gene mutation a prognostic factor for colorectal cancer: a systematic review and meta-analysis. Dis Colon Rectum 55:913–923

    Article  PubMed  Google Scholar 

  47. Tejpar S, Celik I, Schlichting M, Sartorius U, Bokemeyer C, Van Cutsem E (2012) Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 30:3570–3577

    Article  CAS  PubMed  Google Scholar 

  48. Rowland A, Dias MM, Wiese MD, Kichenadasse G, McKinnon RA, Karapetis CS, Sorich MJ (2016) Meta-analysis comparing the efficacy of anti-EGFR monoclonal antibody therapy between KRAS G13D and other KRAS mutant metastatic colorectal cancer tumours. Eur J Cancer 55:122–130

    Article  CAS  PubMed  Google Scholar 

  49. De Roock W, Jonker DJ, Di Nicolantonio F et al (2010) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304:1812–1820

    Article  PubMed  Google Scholar 

  50. Schirripa M, Loupakis F, Lonardi S, Cremolini C, Bergamo F, Zagonel V, Falcone A (2015) Phase II study of single-agent cetuximab in KRAS G13D mutant metastatic colorectal cancer. Ann Oncol 26:2503

    Article  CAS  PubMed  Google Scholar 

  51. E. Segelov, S. Thavaneswaran, P. Waring et. al (2015) The AGITG ICECREAM study: the irinotecan cetuximab evaluation and cetuximab response evaluation amongst patients with a G13D mutation-analysis of outcomes in patients with refractory metastatic colorectal cancer harbouring the KRAS G13D mutation. ESMO European Cancer Congress:32LBA

  52. Diaz LA Jr, Williams RT, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bertotti A, Papp E, Jones S et al (2015) The genomic landscape of response to EGFR blockade in colorectal cancer. Nature 526:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White MF (2003) Insulin signaling in health and disease. Science 302:1710–1711

    Article  CAS  PubMed  Google Scholar 

  55. Montagut C, Dalmases A, Bellosillo B et al (2012) Identification of a mutation in the extracellular domain of the Epidermal Growth Factor Receptor conferring cetuximab resistance in colorectal cancer. Nat Med 18:221–223

    Article  CAS  PubMed  Google Scholar 

  56. Kearns JD, Bukhalid R, Sevecka M et al (2015) Enhanced Targeting of the EGFR Network with MM-151, an Oligoclonal Anti-EGFR Antibody Therapeutic. Mol Cancer Ther 14:1625–1636

    Article  CAS  PubMed  Google Scholar 

  57. Arena S, Siravegna G, Mussolin B et al (2016) MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med 8:324ra14

    Article  PubMed  Google Scholar 

  58. Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Kragh M (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70:588–597

    Article  CAS  PubMed  Google Scholar 

  59. Sanchez-Martin FJ, Bellosillo B, Gelabert M et. al (2016) The first-in-class anti-EGFR antibody mixture Sym004 overcomes cetuximab-resistance mediated by EGFR extracellular domain mutations in colorectal cancer. Clin Cancer Res

  60. Li P, Wood K, Mamon H, Haser W, Roberts T (1991) Raf-1: a kinase currently without a cause but not lacking in effects. Cell 64:479–482

    Article  CAS  PubMed  Google Scholar 

  61. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  62. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283:125–134

    Article  CAS  PubMed  Google Scholar 

  63. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  CAS  PubMed  Google Scholar 

  64. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934

    Article  CAS  PubMed  Google Scholar 

  65. Barault L, Veyrie N, Jooste V et al (2008) Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 122:2255–2259

    Article  CAS  PubMed  Google Scholar 

  66. Clancy C, Burke JP, Kalady MF, et al (2013) BRAF mutation is associated with distinct clinicopathological characteristics in colorectal cancer: a systematic review and meta-analysis. Colorectal Dis 15:e711–8

  67. Van Cutsem E, Kohne CH, Lang I et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29:2011–2019

    Article  PubMed  Google Scholar 

  68. Bokemeyer C, Bondarenko I, Hartmann JT et al (2011) Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 22:1535–1546

    Article  CAS  PubMed  Google Scholar 

  69. Maughan TS, Adams RA, Smith CG et al (2011) Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 377:2103–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stintzing S, Jung A, Rossius L et. al (2014) Mutations within the EGFR signaling pathway: influence on efficacy in FIRE-3—a randomized phase III study of FOLFIRI plus cetuximab or bevacizumab as first-line treatment for wild-type (WT) KRAS (exon 2) metastatic colorectal cancer (mCRC) patients. J Clin Oncol 32 (suppl 3; abstr 445) :

  71. Peeters M, Oliner KS, Price TJ et al (2015) Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as Second-line Treatment for Metastatic Colorectal Cancer. Clin Cancer Res 21:5469–5479

    Article  CAS  PubMed  Google Scholar 

  72. Seymour MT, Brown SR, Middleton G et al (2013) Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 14:749–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karapetis CS, Jonker D, Daneshmand M et al (2014) PIK3CA, BRAF, and PTEN status and benefit from cetuximab in the treatment of advanced colorectal cancer--results from NCIC CTG/AGITG CO.17. Clin Cancer Res 20:744–753

    Article  CAS  PubMed  Google Scholar 

  74. Patterson SD, Peeters M, Siena S, Van Cutsem E, Humblet Y, Van Laethem J-L, et al (2013) Comprehensive analysis of KRAS and NRAS mutations as predictive biomarkers for single agent panitumumab (pmab) response in a randomized, phase 3 metastatic colorectal cancer (mCRC) study (20020408) J Clin Oncol. 31 (supple; abstr 3617)

  75. Roth AD, Tejpar S, Delorenzi M et al (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 28:466–474

    Article  CAS  PubMed  Google Scholar 

  76. Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M (2014) The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol 53:852–864

    Article  CAS  PubMed  Google Scholar 

  77. Pietrantonio F, Petrelli F, Coinu A et al (2015) Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 51:587–594

    Article  CAS  PubMed  Google Scholar 

  78. Kopetz S, Desai J, Chan E et al (2015) Phase II Pilot Study of Vemurafenib in Patients With Metastatic BRAF-Mutated Colorectal Cancer. J Clin Oncol 33:4032–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang H, Higgins B, Kolinsky K et al (2012) Antitumor activity of BRAF inhibitor vemurafenib in preclinical models of BRAF-mutant colorectal cancer. Cancer Res 72:779–789

    Article  CAS  PubMed  Google Scholar 

  80. Corcoran RB, Ebi H, Turke AB et al (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oikonomou E, Koc M, Sourkova V, Andera L, Pintzas A (2011) Selective BRAFV600E inhibitor PLX4720, requires TRAIL assistance to overcome oncogenic PIK3CA resistance. PLoS One 6, e21632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hyman DM, Puzanov I, Subbiah V et al (2015) Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med 373:726–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Corcoran RB, Atreya CE, Falchook GS et al (2015) Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600-Mutant Colorectal Cancer. J Clin Oncol 33:4023–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yaeger R, Cercek A, O’Reilly EM et al (2015) Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res 21:1313–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tabernero J, van Geel R, Bendell JC et. al (2014) Phase I study of the selective BRAFV600 inhibitor encorafenib (LGX818) combined with cetuximab and with or without the a-specific PI3K inhibitor alpelisib (BYL719) in patients with advanced BRAF mutant colorectal cancer. Eur J Cancer 50:6s (suppl; abstr LBA 11) :

  86. Atreya CE, Van Cutsem E, Bendell JC et. al (2015) Updated efficacy of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC). J Clin Oncol 33 (suppl; abstr 103)

  87. David S. Hong, Van Karlyle Morris, Siqing Fu et. al (2014) Phase 1B study of vemurafenib in combination with irinotecan and cetuximab in patients with BRAF-mutated advanced cancers and metastatic colorectal cancer. J Clin Oncol 32:5s (suppl; abstr 3516)

  88. Cremolini C, Loupakis F, Antoniotti C et al (2015) FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol 16:1306–1315

    Article  CAS  PubMed  Google Scholar 

  89. Loupakis F, Cremolini C, Salvatore L et al (2014) FOLFOXIRI plus bevacizumab as first-line treatment in BRAF mutant metastatic colorectal cancer. Eur J Cancer 50:57–63

    Article  CAS  PubMed  Google Scholar 

  90. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  CAS  PubMed  Google Scholar 

  91. Samuels Y, Wang Z, Bardelli A et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  CAS  PubMed  Google Scholar 

  92. Liao X, Lochhead P, Nishihara R et al (2012) Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 367:1596–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Domingo E, Church DN, Sieber O et al (2013) Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol 31:4297–4305

    Article  CAS  PubMed  Google Scholar 

  94. Kim TM, Lee SH, Chung YJ (2013) Clinical applications of next-generation sequencing in colorectal cancers. World J Gastroenterol 19:6784–6793

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang B, Wang J, Wang X et al (2014) Proteogenomic characterization of human colon and rectal cancer. Nature 513:382–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hudecova I (2015) Digital PCR analysis of circulating nucleic acids. Clin Biochem 48:948–956

    Article  CAS  PubMed  Google Scholar 

  97. Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW (2006) BEAMing up for detection and quantification of rare sequence variants. Nat Methods 3:95–97

    Article  CAS  PubMed  Google Scholar 

  98. Heitzer E, Ulz P, Geigl JB (2015) Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 61:112–123

    Article  CAS  PubMed  Google Scholar 

  99. Frattini M, Gallino G, Signoroni S et al (2006) Quantitative analysis of plasma DNA in colorectal cancer patients: a novel prognostic tool. Ann N Y Acad Sci 1075:185–190

    Article  CAS  PubMed  Google Scholar 

  100. Frattini M, Balestra D, Verderio P et al (2005) Reproducibility of a semiquantitative measurement of circulating DNA in plasma from neoplastic patients. J Clin Oncol 23:3163–3164, author reply 3164

    Article  PubMed  Google Scholar 

  101. Spindler KL, Pallisgaard N, Andersen RF, Brandslund I, Jakobsen A (2015) Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer. PLoS One 10, e0108247

    Article  PubMed  PubMed Central  Google Scholar 

  102. Tabernero J, Lenz HJ, Siena S et al (2015) Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol 16:937–948

    Article  CAS  PubMed  Google Scholar 

  103. Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M (1994) Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol 86:774–779

    Article  CAS  PubMed  Google Scholar 

  104. Taly V, Pekin D, Benhaim L et al (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:1722–1731

    Article  CAS  PubMed  Google Scholar 

  105. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mouliere F, El Messaoudi S, Gongora C et al (2013) Circulating Cell-Free DNA from Colorectal Cancer Patients May Reveal High KRAS or BRAF Mutation Load. Transl Oncol 6:319–328

    Article  PubMed  PubMed Central  Google Scholar 

  107. Thierry AR, Mouliere F, El Messaoudi S et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20:430–435

    Article  CAS  PubMed  Google Scholar 

  108. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Siravegna G, Mussolin B, Buscarino M et al (2015) Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 21:795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Esposito A, Bardelli A, Criscitiello C et al (2014) Monitoring tumor-derived cell-free DNA in patients with solid tumors: clinical perspectives and research opportunities. Cancer Treat Rev 40:648–655

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Josef Lenz.

Ethics declarations

Conflict of Interest

HJ Lenz has received honoraria from Merck Serono, Roche, Celgene, Bayer, and Boehringer Ingelheim. The other authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyamoto, Y., Zhang, W. & Lenz, HJ. Molecular Landscape and Treatment Options for Patients with Metastatic Colorectal Cancer. Indian J Surg Oncol 8, 580–590 (2017). https://doi.org/10.1007/s13193-016-0543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13193-016-0543-z

Keywords

Navigation