Skip to main content
Log in

Comparison of Fracture Toughness of All-Ceramic and Metal–Ceramic Cement Retained Implant Crowns: An In Vitro Study

  • Original Article
  • Published:
The Journal of Indian Prosthodontic Society

Abstract

To evaluate the fracture toughness of cement-retained implant-supported metal–ceramic molar crown with that of all-ceramic crowns, fabricated using IPS Empress 2 and yttria-stabilized zirconia copings. An dental implant and abutment was embedded in a clear polymethyl methacrylate model. A wax pattern reproducing the anatomy and dimension of a mandibular molar was made using inlay wax. Copings were made from the manufacturers guidelines for zirconia, metal ceramic and empress crown, in total of 21 copings, which were built for the crowns with metal layering ceramics specified by the manufacturers. The polymethylmethacrylate block-implant abutment complex was mounted on universal testing machine, and a static continuos vertical compressive load with a crosshead speed of 0.5 mm/min was applied. The breaking load and the peak load (in kilo Newtons) were recorded. The fractures for group I (zirconia–ceramic) and group II (metal–ceramic) occurred on the mesio-buccal aspect of the crowns involving the veneered ceramic layer while the catastrophic/bulk fracture was not observed. The mean value of breaking load for zirconia–ceramic, metal–ceramic and IPS-empress 2 was 3.4335, 3.071 and 1.0673 kN respectively. The mean value of peak load for zirconia–ceramic, metal–ceramic and IPS-empress 2 was 4.7365, 3.2757 and 1.566 kN respectively. It can be concluded that the zirconia–ceramic crown with the fracture toughness of 4.7365 ± 2.2676 kN has sufficient strength to allow clinical testing of these crowns as an alternative for metal–ceramic crowns (3.2757 ± 0.4681 kN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albrektsson T, Dahl E, Enbom L, Engevall S, Engquist B, Eriksson AR, Feldmann G, Freiberg N, Glantz PO, Kjellman O, Kristersson L, Kvint S, Köndell P, Palmquist J, Werndahl L, Åstrand P (1988) Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol 59:287–296

    Article  PubMed  Google Scholar 

  2. Adell R, Eriksson B, Lekholm U, Brånemark PI, Jemt T (1990) Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5:347–359

    PubMed  Google Scholar 

  3. Binon PP (2000) Implants and components: entering the new millennium. Int J Oral Maxillofac Implants 15:76–94

    PubMed  Google Scholar 

  4. Preiskal HW, Tsolka P (2004) Cement and screw retained implant-supported prostheses: up to 10 years of follow-up of a new design. Int J Oral Maxillofac Implants 19:87–91

    Google Scholar 

  5. Linkevicius T, Vladimirovas E, Grybauskas S, Puisys A, Rutkunas V (2008) Veneer fracture in implant-supported metal–ceramic restorations. Part I: overall success rate and impact of occlusal guidance. Stomatologija 10:133–139

    PubMed  Google Scholar 

  6. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP (2008) A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clin Oral Implants Res 19:119–130

    Article  PubMed  Google Scholar 

  7. Pjetursson BE, Tan K, Lang NP, Bragger U, Egger M, Zwahlen M (2004) A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 15:625–642

    Article  PubMed  Google Scholar 

  8. Tan K, Pjetursson BE, Lang NP, Chan ES (2004) A systematic review of the survival and complication rates of fixed partial dentures after an observation period of at least 5 years. Clin Oral Implants Res 15:654–666

    Article  PubMed  Google Scholar 

  9. Sharma P (2005) 90 % of fixed partial dentures survives 5 years. How long do conventional fixed partial dentures survive and how frequently do complications occur? Evid Based Dent 6:74–75

    Article  PubMed  Google Scholar 

  10. Schulte W (1995) Implants and the periodontium. Int Dent J 45:16–26

    PubMed  Google Scholar 

  11. Jason AG (2007) Recent advances in materials for all-ceramic restorations. Dent Clin North Am 51:713–727

    Article  Google Scholar 

  12. McLaren EA, White SN (2000) Survival of in-ceram crowns in a private practice: a prospective clinical trial. J Prosthet Dent 83:216–222

    Article  PubMed  Google Scholar 

  13. Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H (2001) Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont 14:231–238

    PubMed  Google Scholar 

  14. Tinschert J, Natt G, Hassenpflug S, Spiekermann H (2004) Status of current CAD/CAM technology in dental medicine. Int J Comput Dent 7:25–45

    PubMed  Google Scholar 

  15. Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH (2007) A systematic review of the survival and complication rates of all-ceramic and metal ceramic reconstructions after an observation period of at least 3 years. Part I: single crowns. Clin Oral Implant Res 18:73–85

    Article  Google Scholar 

  16. Lysell L, Myrberg N (1982) Mesiodistal tooth size in the deciduous and permanent teeth. Eur J Orthod 4:113–122

    Article  PubMed  Google Scholar 

  17. Rekow ED, Zhang G, Thompson V, Kim JW, Coehlo P, Zhang Y (2009) Effects of geometry on fracture initiation and propagation in all-ceramic crowns. J Biomed Mater Res B Appl Biomater 88:436–446

    Article  PubMed  Google Scholar 

  18. Wolf D, Bindl A, Schmidlin PR, Luthy H, Mörmann WH (2008) Strength of CAD/CAM-generated esthetic ceramic molar implant crowns. Int J Oral Maxillofac Implants 23:609–617

    PubMed  Google Scholar 

  19. Jones DW (1985) Development of dental ceramics. An historical perspective. Dent Clin North Am 29:621–644

    PubMed  Google Scholar 

  20. Shen C (2003) Dental cements. In: Anusavice KJ (ed) Text book of dental materials, 11th edn. Saunder’s Publication, Missouri

    Google Scholar 

  21. Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications. J Dent 35:819–826

    Article  PubMed  Google Scholar 

  22. Fischer J, Stawarzyk B, Tomic M, Strub JR, Hammerle CH (2007) Effect of thermal misfit between different veneering ceramics and zirconia frameworks on in vitro fracture load of single crowns. Dent Mater J 26:766–772

    Article  PubMed  Google Scholar 

  23. Lehner CR, Scharer P (1992) All-ceramic crowns. Curr Opin Dent 2:45–52

    PubMed  Google Scholar 

  24. Synder MD, Hogg KD (2005) Load-to-fracture value of different all-ceramic systems. J Contemp Dent Pract 15:54–63

    Google Scholar 

  25. Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH (2007) A systematic review of the survival and complication rates of all-ceramic and metal ceramic reconstructions after an observation period of at least 3 years. Part I: single crowns. Clin Oral Implant Res 18:73–85

    Article  Google Scholar 

  26. Senyilmaz DP, Canay S, Heydecke G, Strub JR (2010) Influence of thermomechanical fatigue loading on the fracture resistance of all-ceramic posterior crowns. Eur J Prosthodont Restor Dent 18:50–54

    PubMed  Google Scholar 

  27. Ritter JE (1995) Predicting lifetimes of materials and material structures. Dent Mater 11:142–146

    Article  PubMed  Google Scholar 

  28. Shirakura A, Lee H, Geminiani AA, Ercoli C, Feng C (2009) The influence of veneering porcelain thickness of all-ceramic and metal–ceramic crowns on failure resistance after cyclic loading. J Prosthet Dent 101:119–127

    Article  PubMed  Google Scholar 

  29. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK, Rekow ED, Thompson VP (2004) Materials design in the performance of all-ceramic crown. Biomaterials 25:2885–2892

    Article  PubMed  Google Scholar 

  30. Donovan TE (2008) Factors essential for successful all-ceramic restorations. J Am Dent Assoc 139(Suppl):14S–18S

    Article  PubMed  Google Scholar 

  31. Tinschert J, Schulze KA, Natt G, Latzke P, Heussen N, Spiekermann H (2008) Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results. Int J Prosthodont 21:217–222

    PubMed  Google Scholar 

  32. Beuer F, Edelhoff D, Gernet W, Sörensen JA (2009) Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs). Clin Oral Investig 13:445–451

    Article  PubMed  Google Scholar 

  33. Vult von Steyern P, Carlson P, Nilner K (2005) All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 32:180–187

    Article  PubMed  Google Scholar 

  34. dos Santos JG, Fonseca RG, Adabo GL, dos Santos Cruz CA (2006) Shear bond strength of metal–ceramic repair systems. J Prosthet Dent 96:165–173

    Article  PubMed  Google Scholar 

  35. Guess PC, Zavanell RA, Silva NR, Bonfante EA, Coehlo P, Thompson VP (2010) Monolithic CD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue. Int J Prosthodont 23:434–442

    PubMed  Google Scholar 

  36. Tsalouchou E, Cattell MJ, Knowles JC, Pittayachawan P, McDonald A (2007) Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent Mater 24:308–318

    Article  PubMed  Google Scholar 

  37. Birkby I, Stevens R (1996) Applications of zirconia ceramics. Key Eng Mater 122:527–552

    Article  Google Scholar 

  38. Swain MV (2009) Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater 5:1668–1677

    Article  PubMed  Google Scholar 

  39. Evans D, Barghi N, Malloy CM (1990) The influence of condensation method on porosity and shade of body porcelain. J Prosthet Dent 63:380–389

    Article  PubMed  Google Scholar 

  40. Potiket N, Chiche G, Finger IM (2004) In vitro fracture strength of teeth restored with different all-ceramic crown systems. J Prosthet Dent 92:491–495

    Article  PubMed  Google Scholar 

  41. Kollar A, Huber S, Mericske E, Mericske-Stern R (2008) Zirconia for teeth and implants: a case series. Int J Periodont Restor Dent 28:479–487

    Google Scholar 

  42. Sturzenegger B, Feher A, Lüthy H, Schumacher M, Loeffel O, Filser F, Kocher P, Gauckler L, Schärer P (2000) Clinical evaluation of zirconium oxide bridges in the posterior segments fabricated with the DCM system. Acta Med Dent Helv 5:131–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chowdhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, S., Chowdhary, R. Comparison of Fracture Toughness of All-Ceramic and Metal–Ceramic Cement Retained Implant Crowns: An In Vitro Study. J Indian Prosthodont Soc 14, 408–414 (2014). https://doi.org/10.1007/s13191-013-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13191-013-0347-6

Keywords

Navigation