Skip to main content

Advertisement

Log in

Predictive genomic tools in disease stratification and targeted prevention: a recent update in personalized therapy advancements

  • Review
  • Published:
EPMA Journal Aims and scope Submit manuscript

Abstract

In the current era of medical revolution, genomic testing has guided the healthcare fraternity to develop predictive, preventive, and personalized medicine. Predictive screening involves sequencing a whole genome to comprehensively deliver patient care via enhanced diagnostic sensitivity and specific therapeutic targeting. The best example is the application of whole-exome sequencing when identifying aberrant fetuses with healthy karyotypes and chromosomal microarray analysis in complicated pregnancies. To fit into today’s clinical practice needs, experimental system biology like genomic technologies, and system biology viz., the use of artificial intelligence and machine learning is required to be attuned to the development of preventive and personalized medicine. As diagnostic techniques are advancing, the selection of medical intervention can gradually be influenced by a person’s genetic composition or the cellular profiling of the affected tissue. Clinical genetic practitioners can learn a lot about several conditions from their distinct facial traits. Current research indicates that in terms of diagnosing syndromes, facial analysis techniques are on par with those of qualified therapists. Employing deep learning and computer vision techniques, the face image assessment software DeepGestalt measures resemblances to numerous of disorders. Biomarkers are essential for diagnostic, prognostic, and selection systems for developing personalized medicine viz. DNA from chromosome 21 is counted in prenatal blood as part of the Down’s syndrome biomarker screening. This review is based on a detailed analysis of the scientific literature via a vigilant approach to highlight the applicability of predictive diagnostics for the development of preventive, targeted, personalized medicine for clinical application in the framework of predictive, preventive, and personalized medicine (PPPM/3 PM). Additionally, targeted prevention has also been elaborated in terms of gene-environment interactions and next-generation DNA sequencing. The application of 3 PM has been highlighted by an in-depth analysis of cancer and cardiovascular diseases. The real-time challenges of genome sequencing and personalized medicine have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vogenberg FR, Barash CI, Pursel M. Personalized medicine - Part 1: Evolution and development into theranostics. PT. 2010;35(10):560–76.

    Google Scholar 

  2. Aronson SJ, Rehm HL. Building the foundation for genomics in precision medicine. Nature. 2015;526(7573):336–42.

    Article  CAS  Google Scholar 

  3. Golubnitschaja O, Kinkorova J, Costigliola V. Predictive, preventive and personalized medicine as the hardcore of “horizon 2020”: EPMA position paper. EPMA J. 2014;5(1):6.

    Article  Google Scholar 

  4. Mieda J, Ohaki Y, Oguro T, Shimizu H, Akasaka K, Kyomoto A, et al. Breast cancer with neuroendocrine differentiation detected by unique staining pattern of neoplastic cells in hercep test. J Nippon Med Sch. 2004;71(3):203–8.

    Article  Google Scholar 

  5. Khoury MJ, Iademarco MF, Riley WT. Precision public health for the era of precision medicine. Am J Prev Med. 2016;50(3):398–401.

    Article  Google Scholar 

  6. Frank M, Prenzler A, Eils R, von der Schulenburg JMG. Genome sequencing: a systematic review of health economic evidence. Health Econ Rev. 2013;3(1):29.

    Article  Google Scholar 

  7. Younesi E, Hofmann-Apitius M. From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA J. 2013;4(1):23.

    Article  Google Scholar 

  8. Garrod AE. The incidence of alkaptonuria: a study in chemical individuality. 1902 [classical article]. Yale J Biol Med. 2002;75(4):221–31.

    Google Scholar 

  9. Stanley BA. The inborn factors in disease: an essay. J Am Med Assoc. 1931;97(16):1174.

    Article  Google Scholar 

  10. Perlman RL, Govindaraju DR. Archibald E. Garrod: The father of precision medicine. Genet Med. 2016;18:1088–9.

    Article  CAS  Google Scholar 

  11. Villa A, Sonis ST. System biology. Translational Systems Medicine and Oral Disease. Academic Press; 2020;9–16.

  12. Hood L. Systems biology and P4 medicine: past, present, and future. Rambam Maimonides Med J. 2013;4.

  13. Joyner MJ, Pedersen BK. Ten questions about systems biology. J Physiol. 2011;589:1017–30.

    Article  CAS  Google Scholar 

  14. Chen R, Snyder M. Systems biology: personalized medicine for the future? Curr Opin Pharmacol. 2012;12(5):623–8.

    Article  CAS  Google Scholar 

  15. Gifari MW, Samodro P, Kurniawan DW. Artificial intelligence toward personalized medicine. PSR. 2021;8:65–72.

    Google Scholar 

  16. Schork NJ. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019;178:265–83.

    Article  CAS  Google Scholar 

  17. Lipsitz LA. Physiological complexity, aging, and the path to frailty. Sci Aging Knowledge Environ. 2004;2004:16.

    Article  Google Scholar 

  18. Hackner M, Lehle W. Predictive diagnostics solutions beyond big data. 2017; https://doi.org/10.1007/978-3-658-17109-4_12.

  19. Bellavista P, Penna R della, Foschini L, Scotece D. Machine learning for predictive diagnostics at the edge: an IIoT practical example. IEEE Int Conf Commun 2020; https://doi.org/10.1109/ICC40277.2020.9148684.

  20. Burden-Teh E, Murphy R, Gran S, Nijsten T, Hughes C, Abdul-Wahab A, et al. Identifying the best predictive diagnostic criteria for psoriasis in children (< 18 years): a UK multicentre case–control diagnostic accuracy study (DIPSOC study) *. Br J Dermatol. 2022;186:341–51.

    Article  CAS  Google Scholar 

  21. Väänänen A, Haataja K, Vehviläinen-Julkunen K, Toivanen P. AI in healthcare: A narrative review. F1000Res. 2021;10:6.

    Article  Google Scholar 

  22. Watanabe K, Aoki Y, Matsumoto M. An application of artificial intelligence to diagnostic imaging of spine disease: estimating spinal alignment from moiré images. Neurospine. 2019;16:697–702.

    Article  Google Scholar 

  23. Birkenbihl C, Emon MA, Vrooman H, Westwood S, Lovestone S, Hofmann-Apitius M, et al. Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice. EPMA J Springer Sci Bus Media Deutschland GmbH. 2020;11:367–76.

    Google Scholar 

  24. Jothi N, Rashid NA, Husain W. Data mining in healthcare - a review. Procedia Comput Sci. 2015;72:306–13.

    Article  Google Scholar 

  25. Zhu S, Li Z, Cui L, Ban Y, Leung PCK, Li Y, et al. Activin A increases human trophoblast invasion by upregulating integrin β1 through ALK4. FASEB J John Wiley and Sons Inc. 2021;35:e21220.

    CAS  Google Scholar 

  26. Teama S. DNA Polymorphisms: DNA-based molecular markers and their application in medicine. In: Liu Y, editor. Genetic Diversity and Disease Susceptibility. London: IntechOpen; 2018

  27. Domschke K. Targeted prevention of anxiety disorders. Eur Neuropsychopharmacol. 2021;46:49–51.

    Article  CAS  Google Scholar 

  28. Cai Y, Yang J, Huang T, Wang MW. Editorial: Computational methods in predicting complex disease associated genes and environmental factors. Front Genet. 2021. https://doi.org/10.3389/fgene.2021.679651.

    Article  Google Scholar 

  29. Manolio TA, Bailey-Wilson JE, Collins FS. Genes, environment, and the value of prospective cohort studies. Nat Rev Genet. 2006;7:812–20.

    Article  CAS  Google Scholar 

  30. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.

    Article  CAS  Google Scholar 

  31. Ogishima S, Nagaie S, Mizuno S, Ishiwata R, Iida K, Shimokawa K, et al. dbTMM: an integrated database of large-scale cohort, genome and clinical data for the Tohoku Medical Megabank Project. Hum Genome Var. 2021. https://doi.org/10.1038/s41439-021-00175-5.

    Article  Google Scholar 

  32. Ruisch IH, Dietrich A, Glennon JC, Buitelaar JK, Hoekstra PJ. Interplay between genome-wide implicated genetic variants and environmental factors related to childhood antisocial behavior in the UK ALSPAC cohort. Eur Arch Psychiatry Clin Neurosci. 2019;269:741–52.

    Article  Google Scholar 

  33. Ikezaki H, Furusyo N, Nakashima R, Umemoto M, Yamamoto K, Matsumoto Y, et al. Kyushu and Okinawa population study (KOPS): a large prospective cohort study in Japan. BMJ Open BMJ Publ Group. 2021;11:e053763.

    Article  Google Scholar 

  34. Gill D, Georgakis MK, Walker VM, Schmidt AF, Gkatzionis A, Freitag DF, et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 2021;6:16.

    Article  Google Scholar 

  35. Yuan S, Carter P, Mason AM, Burgess S, Larsson SC. Coffee consumption and cardiovascular diseases: a Mendelian randomization study. Nutrients. 2021;13:2218.

    Article  CAS  Google Scholar 

  36. Maharjan DT, Syed AAS, Lin GN, Ying W. Testosterone in female depression: a meta-analysis and mendelian randomization study. Biomolecules. 2021;11:409.

    Article  CAS  Google Scholar 

  37. Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nat Rev Microbiol. 2011;9:889–93.

    Article  CAS  Google Scholar 

  38. DeMaria PJ, Bilusic M. Cancer vaccines. Hematol Oncol Clin North Am. 2019;33:199–214.

    Article  Google Scholar 

  39. Kudrna JJ, Ugen KE. Gene-based vaccines and immunotherapeutic strategies against neurodegenerative diseases: potential utility and limitations. Hum Vaccin Immunother. 2015;11:1921–6.

    Article  Google Scholar 

  40. Fiore-Gartland A, Carpp LN, Naidoo K, Thompson E, Zak DE, Self S, et al. Considerations for biomarker-targeted intervention strategies for tuberculosis disease prevention. Tuberculosis (Edinb). 2018;109:61–8.

    Article  Google Scholar 

  41. McCarthy PM, Clifton GT, Vreeland TJ, Adams AM, O’Shea AE, Peoples GE. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs. 2021;30:5–11.

    Article  CAS  Google Scholar 

  42. Bilkey GA, Burns BL, Coles EP, Bowman FL, Beilby JP, Pachter NS, et al. Genomic testing for human health and disease across the life cycle: applications and ethical, legal, and social challenges. Front Public Health. 2019;7:40.

    Article  Google Scholar 

  43. Bonetta L. Whole-genome sequencing breaks the cost barrier. Cell. 2010;141:917–9.

    Article  CAS  Google Scholar 

  44. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1:182–8.

    Article  Google Scholar 

  45. Parker LA, Chilet-Rosell E, Hernández-Aguado I, Pastor-Valero M, Gea S, Lumbreras B. Diagnostic biomarkers: are we moving from discovery to clinical application? Clin Chem. 2018;64:1657–67.

    Article  CAS  Google Scholar 

  46. Hicks T, Coquoz R. Forensic DNA Evidence. In: Li SZ, Jain A, editors. Encyclopedia of biometrics. Boston: Springer; 2009. p. 573–9.

    Chapter  Google Scholar 

  47. Thompson IM, Ankerst DP. Prostate-specific antigen in the early detection of prostate cancer. CMAJ. 2007;176:1853–8.

    Article  Google Scholar 

  48. Jørgensen JT. Predictive biomarkers and clinical evidence. Basic Clin Pharmacol Toxicol. 2021;128:642–8.

    Article  Google Scholar 

  49. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) resource [Internet]. Silver Spring (MD): Food and Drug Administration (US); 2016, Understanding Prognostic versus Predictive Biomarkers. 2016. Co-published by National Institutes of Health (US), Bethesda (MD). Accessed 30 September 2022.

  50. Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. GPB. 2016;14:298–313.

    Google Scholar 

  51. Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2000;405:857–65.

    Article  CAS  Google Scholar 

  52. Basak R, Nair NK, Mittra I. Evidence for cell-free nucleic acids as continuously arising endogenous DNA mutagens. Mutat Res. 2016;793–794:15–21.

    Article  Google Scholar 

  53. Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids - a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007;581:795–9.

    Article  CAS  Google Scholar 

  54. Pantel K, Res CAP. Functional studies on viable circulating tumor Cells. Clin Chem. 2016;62:328–34.

    Article  CAS  Google Scholar 

  55. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61:112–23.

    Article  CAS  Google Scholar 

  56. Gambardella V, Tarazona N, Cejalvo JM, Lombardi P, Huerta M, Roselló S, et al. Personalized medicine: recent progress in cancer therapy. Cancers (Basel). 2020;12:1009.

    Article  CAS  Google Scholar 

  57. Stricker T, Catenacci DVT, Seiwert TY. Molecular profiling of cancer - the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic. Semin Oncol. 2011;38:173–85.

    Article  Google Scholar 

  58. Erdem HB, Kaymak AÖ. Genetic diagnosis in chronic myeloid leukemia. Gazi Med J. 2020;31:224–6.

    CAS  Google Scholar 

  59. Abdulmawjood B, Costa B, Roma-rodrigues C, Baptista PV, Fernandes AR. Genetic biomarkers in chronic myeloid leukemia: what have we learned so far? Int J Mol Sci. 2021;22:12516.

    Article  CAS  Google Scholar 

  60. Sasaki K, Jabbour EJ, Ravandi F, Konopleva M, Borthakur G, Wierda WG, et al. The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: a model to improve patient outcomes. Am J Hematol. 2021;96:241–50.

    Article  Google Scholar 

  61. Sareyeldin RM, Gupta I, Al-Hashimi I, Al-Thawadi HA, al Farsi HF, Vranic S, et al. Gene expression and miRNAs profiling: function and regulation in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Cancers (Basel) MDPI AG. 2019;11:646.

    Article  CAS  Google Scholar 

  62. Goutsouliak K, Veeraraghavan J, Sethunath V, de Angelis C, Osborne CK, Rimawi MF, et al. Towards personalized treatment for early stage HER2-positive breast cancer. Nat Rev Clin Oncol. 2020;17:233–50.

    Article  Google Scholar 

  63. Gao C, Zhuang J, Li H, Liu C, Zhou C, Liu L, et al. Development of a risk scoring system for evaluating the prognosis of patients with Her2-positive breast cancer. Cancer Cell Int. 2020;20:121.

    Article  CAS  Google Scholar 

  64. PErsonalized TREatment of High-risk MAmmary Cancer - the PETREMAC Trial (PETREMAC). https://clinicaltrials.gov/ct2/show/NCT02624973. Accessed 30 September 2022

  65. Hermoso-Durán S, García-Rayado G, Ceballos-Laita L, Sostres C, Vega S, Millastre J, et al. Thermal liquid biopsy (TLB) focused on benign and premalignant pancreatic cyst diagnosis. J Pers Med. 2021;11:20.

    Google Scholar 

  66. Rhyner Agocs G, Assarzadegan N, Kirsch R, Dawson H, Galván JA, Lugli A, et al. Lag-3 expression predicts outcome in stage II colon cancer. J Pers Med. 2021;11:749.

    Article  Google Scholar 

  67. Niu S, Liu K, Xu Y, Peng C, Yu Y, Huang Q, et al. Genomic landscape of Chinese clear cell renal cell carcinoma patients with venous tumor thrombus identifies chromosome 9 and 14 deletions and related immunosuppressive microenvironment. Front Oncol. 2021;11:646338.

    Article  Google Scholar 

  68. Martini DJ, Olsen TA, Goyal S, Liu Y, Evans ST, Magod B, et al. Body composition variables as radiographic biomarkers of clinical outcomes in metastatic renal cell carcinoma patients receiving immune checkpoint inhibitors. Front Oncol. 2021;11:707050.

    Article  Google Scholar 

  69. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016 Oct 8;388(10053):1459–1544. Erratum in: Lancet. 2017;389:e1.

  70. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics-2015 update : A report from the American Heart Association. Circulation. 2015;131:E29–32.

    Google Scholar 

  71. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2020;4:186.

    Article  Google Scholar 

  72. Taking personalized medicine to heart. Nat Med. 2018;24:113

  73. Xu M, Song J. Targeted therapy in cardiovascular disease: a precision therapy era. Front Pharmacol. 2021;12:623674.

    Article  CAS  Google Scholar 

  74. Gong IY, Kim RB. Pharmacogenetic advances in cardiovascular medicine: relevance to personalized medicine. Curr Genet Med Rep. 2013;1:1–14.

    Article  Google Scholar 

  75. Lee YS, Chun P. Effect of SLCO1B1 T521C on statin-induced myotoxicity: a systematic review and meta-analysis. Korean J Clin Pharm. 2018;28:320–30.

    Article  CAS  Google Scholar 

  76. Rhainds D, Packard CJ, Brodeur MR, Niesor EJ, Sacks FM, Jukema JW, Wright RS, Waters DD, Heinonen T, Black DM, Laghrissi-Thode F, Dubé MP, Pfeffer MA, Tardif JC. Role of adenylate cyclase 9 in the pharmacogenomic response to dalcetrapib: clinical paradigm and molecular mechanisms in precision cardiovascular medicine. Circ Genom Precis Med. 2021;14:e003219.

    Article  CAS  Google Scholar 

  77. Kumar D, Mukherjee SS, Chakraborty R, Roy RR, Pandey A, Patra S, et al. The emerging role of gut microbiota in cardiovascular diseases. Indian Heart J. 2021;73:264–72.

    Article  Google Scholar 

  78. Precision Medicine Study on Cardiovascular Disease (PRECISE). https://www.clinicaltrials.gov/ct2/show/NCT04434911. Accessed 30 September 2020.

  79. Lanzani C, Raffaele OS. Pharmacogenomics of hypertension personalized medicine (PGX-HT). https://www.clinicaltrials.gov/ct2/show/NCT03249285. Accessed 30 September 2020.

  80. Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109:952–63.

    Article  Google Scholar 

  81. Sedda G, Gasparri R, Spaggiari L. Challenges, and innovations in personalized medicine care. Future Oncol. 2019;15:3305–8.

    Article  CAS  Google Scholar 

  82. Minich DM, Bland JS. Personalized lifestyle medicine: relevance for nutrition and lifestyle recommendations. Sci World J. 2013;2013:129841.

    Article  Google Scholar 

  83. Jakka S, Rossbach M. An economic perspective on personalized medicine. HUGO J. 2013;7:1.

    Article  Google Scholar 

  84. Jain KK. Textbook of personalized medicine. Textbook of Personalized Medicine. NY: Springer New York 2009; https://doi.org/10.1007/978-1-4419-0769-1

  85. Evans BJ, Burke W, Jarvik GP. The FDA and genomic tests — getting regulation right. N Engl J Med. 2015;372:2258–64.

    Article  CAS  Google Scholar 

  86. Zoon CK, Starker EQ, Wilson AM, Emmert-Buck MR, Libutti SK, Tangrea MA. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev Mol Diagn. 2009;9:455–67.

    Article  CAS  Google Scholar 

  87. Guerra-Assunção JA, Conde L, Moghul I, Webster AP, Ecker S, Chervova O, et al. GenomeChronicler: the Personal Genome Project UK Genomic Report Generator Pipeline. Front Genet. 2020. https://doi.org/10.3389/fgene.2020.518644.

    Article  Google Scholar 

  88. Austin CP. Opportunities and challenges in translational science. Clin Transl Sci. 2021;14:1629–47.

    Article  Google Scholar 

  89. Abbiss H, Maker GL, Trengove RD. Metabolomics approaches for the diagnosis and understanding of kidney diseases. Metabolites. 2019;9:34.

    Article  CAS  Google Scholar 

  90. Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics. 2020;47:69–83.

    Article  Google Scholar 

  91. Klein CJ, Foroud TM. Neurology individualized medicine: when to use next-generation sequencing panels. Mayo Clin Proc. 2017;92:292–305.

    Article  Google Scholar 

  92. Palacín-Aliana I, García-Romero N, Asensi-Puig A, Carrión-Navarro J, González-Rumayor V, Ayuso-Sacido Á. Clinical utility of liquid biopsy-based actionable mutations detected via ddPCR. Biomedicines. 2021;9:906.

    Article  Google Scholar 

  93. Cunha A. Genomic technologies-from tools to therapies. Genome Med. 2017. https://doi.org/10.1186/s13073-017-0462-9.

    Article  Google Scholar 

  94. Galas DJ, McCormack SJ. An historical perspective on genomic technologies. Curr Issues Mol Biol. 2003;5:123–7.

    Google Scholar 

  95. McVeigh TP, Hughes LM, Miller N, Sheehan M, Keane M, Sweeney KJ, et al. The impact of Oncotype DX testing on breast cancer management and chemotherapy prescribing patterns in a tertiary referral centre. Eur J Cancer. 2014;50:2763–70.

    Article  Google Scholar 

  96. Haan JC, Bhaskaran R, Ellappalayam A, Bijl Y, Griffioen CJ, Lujinovic E, et al. MammaPrint and BluePrint comprehensively capture the cancer hallmarks in early-stage breast cancer patients. Genes Chromosom Cancer. 2022;61:146–80.

    Article  Google Scholar 

  97. NHS. Predictive genetic tests for cancer risk genes - NHS. Nhs. 2018; https://www.nhs.uk/conditions/predictive-genetic-tests-cancer/ Accessed 30 September 2022.

  98. PDQ Cancer Genetics Editorial Board. Genetics of Colorectal Cancer (PDQ®): health professional version. In: PDQ Cancer Information Summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002.

  99. Benusiglio PR, Fallet V, Sanchis-Borja M, Coulet F, Cadranel J. Lung cancer is also a hereditary disease. ERR. 2021;30:210045.

    Google Scholar 

  100. PDQ Cancer Genetics Editorial Board. Genetics of Prostate Cancer (PDQ®): health professional version. In: PDQ cancer information summaries [Internet]. Bethesda (MD): National Cancer Institute (US); 2002.

  101. Zhang X, Rastogi P, Shah B, Zhang L. B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy. Oncotarget. 2017;8:66728–41.

    Article  Google Scholar 

  102. Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. New Engl J Med. 2000;343:1688–96.

    Article  CAS  Google Scholar 

  103. Watkins H, Macrae C, Thierfelder L, Chou YH, Frenneaux M, McKenna W, et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat Genet. 1993;3:333–7.

    Article  CAS  Google Scholar 

  104. Carrier L, Hengstenberg C, Beckmann JS, Guicheney P, Dufour C, Bercovici J, et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nat Genet. 1993;4:311–3.

    Article  CAS  Google Scholar 

  105. Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16:379–82.

    Article  CAS  Google Scholar 

  106. Sheikhy A, Fallahzadeh A, Aghaei Meybodi HR, Hasanzad M, Tajdini M, Hosseini K. Personalized medicine in cardiovascular disease: review of literature. J Diabetes Metab Disord. 2021;20:1793–805.

    Article  Google Scholar 

  107. Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019;12:e002460.

    Article  CAS  Google Scholar 

  108. Hirayama-Yamada K, Inagaki N, Hayashi T, Kimura A. A novel titin truncation variant linked to familial dilated cardiomyopathy found in a Japanese family and its functional analysis in genome-edited model cells. Int Heart J. 2021;62:359–66.

    Article  CAS  Google Scholar 

  109. McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121:731–48.

    Article  CAS  Google Scholar 

  110. Chyra Kufova Z, Sevcikova T, Januska J, Vojta P, Boday A, Vanickova P, et al. Newly designed 11-gene panel reveals first case of hereditary amyloidosis captured by massive parallel sequencing. J Clin Pathol. 2018;71:687–94.

    Article  Google Scholar 

  111. Jordan E, Peterson L, Ai T, Asatryan B, Bronicki L, Brown E, et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation. 2021;144:7–19.

    Article  CAS  Google Scholar 

  112. Lee Y, Park H, Kyung Koo S, Kim JH. Establishment of a human-induced pluripotent stem cell line, KSCBi015-A, from a long QT syndrome type 1 patient harboring a KCNQ1 mutation. Stem Cell Res. 2021;56:102521.

    Article  CAS  Google Scholar 

  113. Gu K, Qian D, Qin H, Cui C, Fernando WCHA, Wang D, et al. A novel mutation in KCNH2 yields loss-of-function of hERG potassium channel in long QT syndrome 2. Pflugers Arch. 2021;473:219–29.

    Article  CAS  Google Scholar 

  114. Lieve KV, Verkerk AO, Podliesna S, van der Werf C, Tanck MW, Hofman N, et al. Gain-of-function mutation in SCN5A cause ventricular arrhythmias and early onset atrial fibrillation. Int J Cardiol. 2017;236:187–93.

    Article  Google Scholar 

  115. Campuzano O, Sarquella-Brugada G, Cesar S, Arbelo E, Brugada J, Brugada R. Update on genetic basis of Brugada syndrome: monogenic, polygenic or oligogenic? Int J Mol Sci. 2020;21:7155.

    Article  CAS  Google Scholar 

  116. Brugada J, Campuzano O, Arbelo E, Sarquella-Brugada G, Brugada R. Present status of Brugada syndrome: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:1046–59.

    Article  Google Scholar 

  117. Nettuwakul C, Praditsap O, Sawasdee N, Rungroj N, Ruamyod K, Watanapa WB, et al. Loss-of-function mutations of SCN10A encoding NaV1.8 α subunit of voltage-gated sodium channel in patients with human kidney stone disease. Sci Rep. 2018;8:10453.

    Article  Google Scholar 

  118. Dewi IP, Dharmadjati BB. Short QT syndrome: the current evidence of diagnosis and management. J Arrhythm. 2020;36:962–6.

    Article  Google Scholar 

  119. Campuzano O, Fernandez-Falgueras A, Lemus X, Sarquella-Brugada G, Cesar S, Coll M, et al. Short QT syndrome: a comprehensive genetic interpretation and clinical translation of rare variants. J Clin Med. 2019;8:1035.

    Article  CAS  Google Scholar 

  120. Postema PG, Christiaans I, Hofman N, Alders M, Koopmann TT, Bezzina CR, Loh P, Zeppenfeld K, Volders PG, Wilde AA. Founder mutations in the Netherlands: familial idiopathic ventricular fibrillation and DPP6. Neth Heart J. 2011;19:290–6.

    Article  CAS  Google Scholar 

  121. Marsman RF, Barc J, Beekman L, Alders M, Dooijes D, van den Wijngaard A, et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol. 2014;63:259–66.

    Article  CAS  Google Scholar 

  122. Beach LY, Goldschlager N, Moss JD, Scheinman MM. Idiopathic ventricular fibrillation in a 29-year-old man. Circulation. 2017;136:112–4.

    Article  Google Scholar 

  123. Topol EJ, Smith J, Plow EF, Wang QK. Genetic susceptibility to myocardial infarction and coronary artery disease. Hum Mol Genet. 2006;15:R117–23.

    Article  CAS  Google Scholar 

  124. Ustinova M, Silamikelis I, Kalnina I, Ansone L, Rovite V, Elbere I, et al. Metformin strongly affects transcriptome of peripheral blood cells in healthy individuals. PLoS One. 2019;14:e0224835.

    Article  CAS  Google Scholar 

  125. Roberts R. A genetic basis for coronary artery disease. Trends Cardiovasc Med. 2015;25:171–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Literature survey, collection, and analysis were performed by Neha Jain, Upendra Nagaich, and Manisha Pandey. The first draft of the manuscript was written by Neha Jain and Upendra Nagaich. Further modifications in subsequent drafts were done by Dinesh Kumar Chellappan and Kamal Dua. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Neha Jain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Technical advancements in the fields of genomics in predictive, preventive, and personalized medicine have been on the rise.

• Predictive information on modifications in genetic makeup or any gene mutation can prevent disease manifestation.

• Personalized medicine (PM) is a medical approach for patient classification based on illness subtypes, risks, diagnoses, or therapy responses using specialized diagnostic tests.

• Personalized medicine based on genome analysis aims to enhance therapeutic outcomes and decrease adverse effects important to physicians and patients.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, N., Nagaich, U., Pandey, M. et al. Predictive genomic tools in disease stratification and targeted prevention: a recent update in personalized therapy advancements. EPMA Journal 13, 561–580 (2022). https://doi.org/10.1007/s13167-022-00304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13167-022-00304-2

Keywords

Navigation