Skip to main content
Log in

Weyl transforms on the upper half plane

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Consider the upper half plane S=ℝ×ℝ+ with the hyperbolic metric and the corresponding measure dxdy/y 2. We introduce a Weyl transform mapping functions on the space S×ℝ2 (viewed as the cotangent bundle of S) to operators on L 2-space on S, by using the Plancherel formula. It is proved that the Weyl transform with symbol in L p (p∈[1,2]) is not only bounded but also compact, while when 2<p<+∞, the Weyl transform is not a bounded operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arazy, J., Upmeier, H.: Berezin transform for solvable groups. Acta Appl. Math. 81(1–3), 5–28 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bateman, H.: In: Erdélyi, A. (ed.) Higher Transcendental Functions, vol. 1. Dover, New York (1953)

    Google Scholar 

  3. Bloom, W.R., Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups. de Gruyter Studies in Mathematics, vol. 20. de Gruyter, Berlin (1995)

    MATH  Google Scholar 

  4. Boggiatto, P., Buzano, E., Rodino, L.: Global Ellipticity and Spectral Theory, vol. 92. Akademie-Verlag, Berlin (1996)

    Google Scholar 

  5. Boggiatto, P., Rodino, L.: Quantization and pseudo-differential operators. Cubo Math. Educ. 1(5), 237–272 (2003)

    MathSciNet  Google Scholar 

  6. Bouattour, L., Trimèche, K.: Beurling-Hormander’s theorem for the Chébli-Trimèche transform. Glob. J. Pure Appl. Math. 1(3), 342–357 (2005)

    MATH  MathSciNet  Google Scholar 

  7. Dachraoui, A.: Weyl-Bessel transforms. J. Comput. Appl. Math. 133(1–2), 263–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gröchenig, K.H.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  9. Lebedev, N.N.: Special Functions and Their Applications. Dover, New York (1972)

    MATH  Google Scholar 

  10. Oberhettinger, F.: Tables of Bessel Transforms. Springer, New York (1972)

    MATH  Google Scholar 

  11. Pool, J.C.T.: Mathematical aspect of the Weyl correspondence. J.  Math. Phys. 7, 66–76 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rachdi, L.T., Trimèche, K.: Weyl transforms associated with the spherical mean operator. Anal. Appl. (Singap.) 1(2), 141–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Simon, B.: The Weyl transforms and L p functions on phase space. Proc. Am. Math. Soc. 116, 1045–1047 (1992)

    Article  MATH  Google Scholar 

  14. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Princeton Univ. Press, Princeton (1993)

    MATH  Google Scholar 

  15. Terras, A.: Harmonic Analysis on Symmetric Space and Application 1. Springer, New York-Berlin-Heidelberg (1985)

    Google Scholar 

  16. Toft, J.: Continuity properties for modulation spaces with applications to pseudodifferential calculus, I. J. Funct. Anal. 207(2), 399–429 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Toft, J.: Continuity properties for modulation spaces with applications to pseudodifferential calculus, II. Ann. Glob. Anal. Geom. 26, 73–106 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Unterberger, A., Upmeier, H.: The Berezin transform and invariant differential operators. Commun. Math. Phys. 164, 563–597 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Upmeier, H.: Weyl quantization of symmetric spaces. I. Hyperbolic matrix domains. J. Funct. Anal. 96(2), 297–330 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge Univ. Press, Cambridge (1966)

    MATH  Google Scholar 

  21. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1950)

    Google Scholar 

  22. Wong, M.W.: Weyl Transform. Springer, New York (1998)

    Google Scholar 

  23. Zhang, G.: Invariant differential operators on Hermitian symmetric spaces and their eigenvalues. Isr. J. Math. 119, 157–185 (2000)

    Article  MATH  Google Scholar 

  24. Zhao, J.M., Peng, L.Z.: Wavelet and Weyl transform associated with the spherical mean operator. Integr. Equ. Oper. Theory 50(2), 279–290 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiman Zhao.

Additional information

Mathematical Center of Chinese Ministry of Education, by NNSF of China No. 10990012 and No. 10826106, and RFDP of China No. 20060001010 and No. 200800010009.

The Project-sponsored by SRF for ROCS, SEM, China, and by NNSF of China No. 10871048 and No. 10931001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, L., Zhao, J. Weyl transforms on the upper half plane. Rev Mat Complut 23, 77–95 (2010). https://doi.org/10.1007/s13163-009-0013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-009-0013-z

Mathematics Subject Classification (2000)

Navigation