Skip to main content
Log in

Bifurcation analysis of a self-organizing signaling system for eukaryotic chemotaxis

  • Original Paper
  • Area 3
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Phosphatidylinositol 3,4,5-trisphosphate (\(\hbox {PIP}_3\)) is a membrane lipid that works as a directional compass in migrating cells. Remarkably, \(\hbox {PIP}_3\) shows both transient patterns and oscillatory patterns on the membrane, depending on experimental conditions (Arai et al. in Proc Natl Acad Sci 107:12399–12404, 2010). Here, we analyzed a reaction–diffusion model of the phosphatidylinositol signaling system that gives rise to transient pattern formation. Numerical bifurcation analysis showed that equilibrium solutions can be classified into uniform, unimodal and bimodal ones, among which the first and the second are stable for some parameter regions. We found that transient patterns of \(\hbox {PIP}_3\) can be explained by the “ghost” after unimodal solutions disappear at a fold bifurcation. We further reduced the original PDEs to five-variable ODEs, considering only local and global concentrations. The bifurcation analysis of the reduced ODEs supports the above observation. Finally, we propose that trajectories of such transient patterns are determined by the phase space structure of the dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arai, Y., Shibata, T., Matsuoka, S., Sato, M.J., Yanagida, T., Ueda, M.: Self-organization of the phosphatidylinositol lipids signaling system for random cell migration. Proc. Natl. Acad. Sci. 107, 12399–12404 (2010)

    Article  Google Scholar 

  2. Dahlem, M.A., Isele, T.M.: Transient localized wave patterns and their application to migraine. J. Math. Neurosci. 3, 7 (2013)

    Article  MathSciNet  Google Scholar 

  3. Hecht, I., Kessler, D.A., Levine, H.: Transient localized patterns in noise-driven reaction–diffusion systems. Phys. Rev. Lett. 104, 158301 (2010)

    Article  Google Scholar 

  4. Hecht, I., Skoge, M.L., Charest, P.G., Ben-Jacob, E., Firtel, R.A., Loomis, W.F., Levine, H., Rappel, W.J.: Activated membrane patches guide chemotactic cell motility. PLoS Comput. Biol. 7, e1002044 (2011)

    Article  MathSciNet  Google Scholar 

  5. Holmes, W.R., Edelstein-Keshet, L.: A comparison of computational models for eukaryotic cell shape and motility. PLoS Comput. Biol. 8, e1002793 (2012)

    Article  MathSciNet  Google Scholar 

  6. Holmes, W.R.: An efficient, non-linear stability analysis for detecting pattern formation in reaction diffusion systems. Bull. Math. Biol. 76, 157–183 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Holmes, W.R., Mata, M.A., Edelstein-Keshet, L.: Local perturbation analysis: a computational tool for biophysical reaction–diffusion models. Biophys. J. 108, 230–236 (2015)

    Article  Google Scholar 

  8. Huang, C.H., Tang, M., Shi, C., Iglesias, P.A., Devreotes, P.N.: An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat. Cell. Biol. 15, 1307–1316 (2013)

    Article  Google Scholar 

  9. Jimbo, S., Morita, Y.: Lyapunov function and spectrum comparison for a reaction–diffusion system with mass conservation. J. Differ. Equ. 255, 1657–1683 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Marée, A.F.M.: How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput. Biol. 8, e1002402 (2012)

    Article  Google Scholar 

  11. Mata, M.A., Dutot, M., Edelstein-Keshet, L., Holmes, W.R.: A model for intracellular actin waves explored by nonlinear local perturbation analysis. J. Theor. Biol. 334, 149–161 (2013)

    Article  MathSciNet  Google Scholar 

  12. Meinhardt, H.: Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874 (1999)

    Google Scholar 

  13. Nishikawa, M., Hörning, M., Ueda, M., Shibata, T.: Excitable signal transduction induces both spontaneous and directional cell asymmetries in the phosphatidylinositol lipid signaling system for eukaryotic chemotaxis. Biophys. J. 106, 723–734 (2014)

    Article  Google Scholar 

  14. Otsuji, M., Ishihara, S., Co, C., Kaibuchi, K., Mochizuki, A., Kuroda, S.: A mass conserved reaction–diffusion system captures properties of cell polarity. PLoS Comput. Biol. 3, e108 (2007)

    Article  MathSciNet  Google Scholar 

  15. Planchon, T.A., Gao, L., Milkie, D.E., Davidson, M.W., Galbraith, J.A., Galbraith, C.G., Betzig, E.: Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011)

    Article  Google Scholar 

  16. Sardanyés, J., Solé, R.V.: Ghosts in the origins of life? Int. J. Bifurc. Chaos 16, 2761–2765 (2006)

    Article  MATH  Google Scholar 

  17. Shi, C., Iglesias, P.A.: Excitable behaviors in amoeboid chemotaxis. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 631–642 (2013)

    Article  Google Scholar 

  18. Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Modeling the self-organized phosphatidylinositol lipid signaling system in chemotactic cells using quantitative image analysis. J Cell Sci. 125, 5138–5150 (2012)

    Article  Google Scholar 

  19. Shibata, T., Nishikawa, M., Matsuoka, S., Ueda, M.: Intracellular encoding of spatiotemporal guidance cues in a self-organizing signaling system for chemotaxis in Dictyostelium cells. Biophys. J. 105, 2199–2209 (2013)

    Article  Google Scholar 

  20. Swaney, K.F., Huan, C.H., Devreotes, P.N.: Eukaryotic chemotaxis: a network of signaling pathway controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39, 265–289 (2010)

    Article  Google Scholar 

  21. Taniguchi, D., Ishihara, S., Oonuki, T., Honda-Kitahara, M., Kaneko, K., Sawai, S.: Phase geometries of two-dimensional excitable waves govern self-organized morphodynamics of amoeboid cells. Proc. Natl. Acad. Sci. 110, 5016–5021 (2013)

    Article  Google Scholar 

  22. Trikey, S.T., Virgin, L.N.: Bottlenecking phenomenon near a saddle-node remnant in Duffing oscillator. Phys. Lett. A 248, 185–190 (1998)

    Article  Google Scholar 

  23. Tang, M., Wang, M., Shi, C., Iglesias, P.A., Devreotes, P.N., Huang, C.H.: Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat. Commun. 5, 5175 (2014)

    Article  Google Scholar 

  24. Xiong, Y., Huang, C.H., Iglesias, P.A., Devreotes, P.N.: Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc. Natl. Acad. Sci. 107, 17079–17086 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the members of Laboratory for Physical Biology for discussion and comments. We also thank the anonymous reviewers for insightful comments and suggestions. This work was supported by MEXT KAKENHI Grant Number 26115722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Shibata.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, N., Shibata, T. Bifurcation analysis of a self-organizing signaling system for eukaryotic chemotaxis. Japan J. Indust. Appl. Math. 32, 807–828 (2015). https://doi.org/10.1007/s13160-015-0185-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-015-0185-5

Keywords

Mathematics Subject Classification

Navigation