Skip to main content

Advertisement

Log in

Relationship Between Biophysical Parameters and Synthetic Indices Derived from Hyperspectral Field Data in a Salt Marsh from Buenos Aires Province, Argentina

  • Short Communication
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Remote sensing tools allow the environmental evaluation of coastal wetlands at a landscape scale, but a deeper understanding is needed of the interactions between biophysical parameters and the electromagnetic signal. The goal of this work was to analyze and quantify the influence of the aboveground biomass and the Leaf Area Index (LAI) on the spectral response of Spartina densiflora marshes in Mar Chiquita coastal lagoon, Argentina. Spectral reflectance at high resolution was measured in S. densiflora canopies under natural conditions, manipulating standing crop by means of successive harvest. Reflectance data were acquired using a spectroradiometer in visible, near infrared (IR) and shortwave IR bands. Spectral Vegetation Indices (VI) were calculated for each standing crop-LAI situation. Several VI significantly correlated with standing crop and LAI, including indices 1) based on the red-IR edge (IR Index (IRI), 695/760 ratio, Simple Ratio (SR), Red Edge Inflection Point (REIP), and different variations of the Normalized Difference VI (NDVI Rouse, NDVI amber, NDVI NOAA, NDVI Landsat, NDVI Modis), 2) indices based on the sharp change green-IR (green NDVI (GNDVI), 800/550 ratio) and 3) indices with a correction for soil noise (OSAVI: Optimized Soil Adjusted VI (OSAVI), and Modified SAVI (MSAVI). The indices with significant regressions with standing crop and LAI were IRI, NDVIAmber and REIP. The total and green standing crop showed better adjustments than LAI, showing R2 values of 0.5. These values were obtained with REIP index. Results indicate that LAI and standing crop of S. densiflora stands could be determined from spectral data but estimations should be taken carefully in high biomass scenarios, because of indexes saturation at higher LAI values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Asrar G, Kanemasu ET, Yoshida M (1985) Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle. Remote Sensing of Environment 17:1–11

    Article  Google Scholar 

  • Baret JG, Clevers PW, Steven MD (1995) The robustness of canopy gap fraction estimates from red and near-infrared reflectances. Remote Sensing of Environment 54:141–151

    Article  Google Scholar 

  • Bedford BL, Preston EM (1988) Developing the scientific basis for assessing cumulative effects of wetland loss and degradation of landscape functions: status, perspectives and prospects. Environmental Management 12(5):751–771

    Article  Google Scholar 

  • Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. Journal of Biogeography 33:158–168

    Article  Google Scholar 

  • Buschman C, Nagel E (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing 14(4):711–772

    Article  Google Scholar 

  • Cagnoni M (1999) Espartillares de la costa bonaerense de la República Argentina. Un caso de humedales costeros. In: Malvárez AI (ed) Tópicos sobre humedales subtropicales y templados de Sudamérica. Montevideo, Uruguay, MAB UNESCO, pp. 55–69

    Google Scholar 

  • Carter GA (1994) Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing 15(3):697–703

    Article  Google Scholar 

  • Carter GA, Cibula WG, Miller RL (1996) Narrow band reflectance imagery compared with thermal imagery for early detection of plant stress. Journal of Plant Physiology 14(8):515–522

    Article  Google Scholar 

  • Castillo JM, Fernandez-Baco L, Castellanos EM, Luque CJ, Figueroa ME, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. Journal of Ecology 88:801–812

    Article  Google Scholar 

  • Claudio HC, Cheng Y, Fuentes DA, Gamon JA, Luo H, Oechel W, Qiu HL, Rahman AF, Sims DA (2006) Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index. Remote Sensing of Environment 103(15):304–311

    Article  Google Scholar 

  • Daughtry CS, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey JE (2000) Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74:229–239

    Article  Google Scholar 

  • Eitel JUH, Long DS, Gessler PE, Hunt ER (2008) Combined Spectral Index to Improve Ground-Based Estimates of Nitrogen Status in Dryland Wheat. Agronomy Journal 100(6):1694–1702

    Article  CAS  Google Scholar 

  • Frank M, Menz G (2003) Detecting Seasonal Changes in a Semi-arid Environment Using Hyperspectral Vegetation Indices. Proceedings of 3rd EARSeL Workshop on Imaging Spectroscopy (Oberpfaffenhofen, Gemany), pp. 504–512.

  • Gamon JA, Qiu HL (1999) Ecological Applications of Remote Sensing at Multiple Scales. In: Pugnaire F, Valladares F (eds) Handbook of Functional Plant Ecology. Marcel Dekker, New York, pp. 805–845

    Google Scholar 

  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-wave band spectral index that track diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41:35–44

    Article  Google Scholar 

  • Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation-use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501

  • Gitelson A, Kaufman Y, Merzylak M (1996) Use of channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58(3):289–298

    Article  Google Scholar 

  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment 80:76–87

    Article  Google Scholar 

  • González Trilla G, De Marco S, Marcovecchio J, Vicari R, Kandus P (2010) Net Primary productivity of Spartina densiflora brong in a SW Atlantic coastal salt marsh. Estuaries and Coasts 33(4):953–962

    Article  Google Scholar 

  • González Trilla G, Borro M, Morandeira N, Schivo F, Kandus P, Marcovecchio J (2013) Allometric scaling of dry weight and leaf area for Spartina densiflora and Spartina alterniflora in two south-west Atlantic saltmarshes. Journal of Coastal Research 29(6):1373–1381

    Article  Google Scholar 

  • Guyot G, Baret F (1988) Utilisation de la haute résolution spectrale pour suivre l‘état des couverts végétaux. Proceedings of 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing (Assois, France), pp. 279–286.

  • Haboudane D, Miller JR, Tremblay N, Zarco-Tejada PJ, Dextraze L (2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81(2–3):416–426

    Article  Google Scholar 

  • Haines-Young R, Green DR, Cousins SH (1993) Landscape Ecology and GIS. Taylor & Francis, London

    Google Scholar 

  • Heege T, Bogner A, Pinnel N (2003) Mapping of submerged aquatic vegetation with a physically based process chain. In SPIE Proceedings on Remote Sensing (Vol. 5233).

  • Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. International Journal of Remote Sensing 4(2):273–288

    Article  Google Scholar 

  • Huete A, Justice C, Liu H (1994) Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment 49:224–234

    Article  Google Scholar 

  • Inada K (1985) Spectral ratio of reflectance for estimating chlorophyll content of leaf. Japanese Journal of Crop Science 54:261–265

    Article  CAS  Google Scholar 

  • Jakubauskas M, Kindscher K, Fraser A, Debinski D, Price KP (2000) Close-range remote sensing of aquatic macrophyte vegetation cover. International Journal of Remote Sensing 21(8):3533–3538

    Article  Google Scholar 

  • Jensen J, Coombs C, Porter D, Jones B, Schill S, White D (1998) Extraction of smooth cordgrass (Spartina alterniflora) biomass and leaf area index parameters from high resolution imagery. Geocarto International 13(4):25

    Article  Google Scholar 

  • Jiang Z, Huete A, Li J, Qi J (2007) Interpretation of the modified soil-adjusted vegetation index isolines in red-NIR reflectance space. Journal of Application Remote Sens. 1:013503

    Article  Google Scholar 

  • Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663–666

    Article  Google Scholar 

  • Kemerer A, Di Bella C, Melchiori R, Benech A, Alvarez R (2007) Comparación de índices espectrales para la predicción del IAF en canopeos de maíz. XII Congreso de Teledetección

  • Kennedy PJ (1989) Monitoring the phenology of Tunisian grazing lands. International Journal of Remote Sensing 10:835–845

    Article  Google Scholar 

  • Klemas V (2001) Remote Sensing of Landscape-Level Coastal Environmental Indicators. Environmental Management 27(1):47–45

    Article  CAS  PubMed  Google Scholar 

  • Kriegler FJ, Malila WA, Nalepka RF, Richardson W (1969) Preprocessing transformations and their effects on multispectral recognition. Proceedings of the 6th International Symposium on Remote Sens. Environ (Michigan, USA), pp. 97–131.

  • Marcovecchio JE, Freije RH, De Marco S, Gavio MA, Beltrame MO, Asteasuain R (2006) Seasonality of hydrographic variables in a coastal lagoon: Mar Chiquita, Argentina. Aquatic Conservation Marine and Freshwater Ecosystems 16:335–347

    Article  Google Scholar 

  • Mitch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. John Wiley, New York

  • Nieva FJJ, Diaz-Espejo A, Castellanos EM, Figueroa ME (2001) Field variability of invading populations of Spartina densiflora Brong. in different habitats of the Odiel marshes (SW Spain). Estuarine Coastal and Shelf Science 52:515–527

    Article  CAS  Google Scholar 

  • O’Neill RV, Hunsaker CT, Jones KB, Riitters KH, Wickham JD, Schwartz PM, Goodman IA, Jackson BL, Baillargeon WS (1997) Monitoring environmental quality at the landscape scale. Bioscience 47:513–519

    Article  Google Scholar 

  • Peñuelas J, Gamon JA, Griffin KL, Field CB (1993) Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment 46(2):110–118

    Article  Google Scholar 

  • Peñuelas J, Gamon J, Fredeen A, Merino J, Field C (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment 48:135–146

  • Qi J, Chehbouni A, Huete AR, Kerr YH (1994) Modified Soil Adjusted Vegetation Index (MSAVI). Remote Sensing of Environment 48:119–126

    Article  Google Scholar 

  • Reusch S (1997) Entwicklung eines reflexionsoptischen Sensors zur Erfassung der Stickstoffversorgung landwirtschaftlicher Kulturpflanzen. PhD thesis, Christian-Albrecht-Universität Kiel.

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment 55:95–107

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In 3rd ERTS Symposium, NASA SP-351 I, pp. 309–317

  • Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement and retrogradation greenwave effect of natural vegetation. NASA/GSFC Type III Final Report, Greenbelt, Md, 371 p

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6:1335–1372

    Article  Google Scholar 

  • Sellers PJ (1987) Canopy reflectance, photosynthesis and transpiration. II The role of biophysics in the linearity of their interdependence. Internal Journal Remote Sensing 6:1335–1372

    Article  Google Scholar 

  • Sellers PJ (1989) Vegetation canopy spectral reflectance and biophysical processes. In: Asrar G (ed) Theory and Applications of Optical Remote Sensing. John Wiley, New York, pp. 297–335

    Google Scholar 

  • Silva T, Costa M, Melack J, Novo E (2008) Remote sensing of aquatic vegetation: theory and applications. Environmental Monitoring and Assessment 140:131–145

    Article  PubMed  Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81:337–354

    Article  Google Scholar 

  • Slater PN, Jackson RD (1982) Atmospheric effects on radiation reflected from soil and vegetation as measured by orbit sensors using various scanning directions. Applied Optics 21:3923

    Article  CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York, USA, 880p

  • Solari F, Shanahan J, Ferguson R, Schepers J, Gitelson A (2008) Active sensor reflectance measurements of corn nitrogen status and yield potential. Agronomy Journal 100(3):571–579

  • Steininger MK (2000) Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia. International Journal of Remote Sensing 21(6&7):1139–1157

    Article  Google Scholar 

  • Sticksel E, Schächtl J, Huber G, Liebler J, Maidl FX (2004) Diurnal Variation in Hyperspectral Vegetation Indices Related to Winter Wheat Biomass Formation. Precision Agriculture 5(5):509–520

    Article  Google Scholar 

  • Sun J, Yang L, Wang Y, Ort DR (2009) Facing the global change: Opportunities for improvement in photosynthetic radiation use efficiency and crop yield. Plant Science 177:511–522

    Article  CAS  Google Scholar 

  • Takebe M, Yoneyama T, Inada K, Murakami T (1990) Spectral reflectance of rice Canopo for estimating crop nitrogen status. Plant and Soil 122:295–297

    Article  CAS  Google Scholar 

  • Trishchenko A (2009) Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: Extension to AVHRR NOAA-17, 18 and METOP-A. Remote Sensing of Environment 113(2):335–341

    Article  Google Scholar 

  • Van-der-Meer F, de Jong, S (2003) Spectral mapping methods: many problems, some solutions. 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching.

  • Vicari RL, Fischer S, Madanes N, Bonaventura SM, Pancotto V (2002) Tiller population dynamics and production on Spartina densiflora (Brong) on the floodplain of the Paraná River, Argentina. Wetlands 22:347–354

    Article  Google Scholar 

  • Vis C, Hudon C, Carignan R (2003) An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales. Aquatic Botany 77:187–201

    Article  Google Scholar 

  • Wang L, Sousa W (2009) Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance. International Journal of Remote Sensing 30(5):1267–1281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. González Trilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Trilla, G., Pratolongo, P., Kandus, P. et al. Relationship Between Biophysical Parameters and Synthetic Indices Derived from Hyperspectral Field Data in a Salt Marsh from Buenos Aires Province, Argentina. Wetlands 36, 185–194 (2016). https://doi.org/10.1007/s13157-015-0715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0715-6

Keywords

Navigation