Skip to main content

Advertisement

Log in

Small Mammals Along SW-Atlantic Marshes: Diversity Correlates with Inland Habitats but Abundance Correlates with Marsh Characteristics

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Tidal marshes are narrow wetlands distributed worldwide between the ocean and a variety of inland-habitats. The high diversity of interacting terrestrial habitats may influence terrestrial species composition and abundance in marshes. We investigated if characteristics of small mammal assemblages inhabiting the South-West-Atlantic (SWA) marshes are influenced by marsh characteristics, or if they vary in relation to changes in the inland biogeographic context. Sampling at five-Spartina marshes across the SWA-coast showed that plant cover, richness and height (ANOVA analysis) and small mammal assemblages (PERMANOVA analysis) differed between habitats (marsh or inland) depending on the site. Generalized Linear Models (GLMs) showed that abundance of small mammals in marshes is related to vegetation cover and diversity. However, its richness was related to the richness of small mammal at the inland habitats. In fact, species present in each marsh were also recorded in adjacent inland habitats. Species composition differed among similar marshes surrounded by different landscapes, while those in the same landscape did not. Consequently, regional abundance of small mammals in SWA-marshes is consistent with ecological sorting of abundance ranges along environmental gradients (e.g., plant-cover and richness). In contrast, landscape composition and configuration strongly affect marsh small mammal species assemblages, even if the marsh-habitats are quite similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam P (1993) Saltmarsh ecology. Cambridge Studies in Ecology. Cambridge University Press, Cambridge, UK

  • Andersen KM, Endara MJ, Turner BL, Bailing JW (2012) Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 168:519–531

    Article  PubMed  Google Scholar 

  • Anderson DR, Burnham KP (1999) General strategies for the analysis of ringing data. Bird Study 46(Supplement):S261–S270

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: Guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Bailey RG (1995) Descriptions of the ecoregions of the United States, 2nd edn. Forest Service, Department of Agriculture, Washington

    Google Scholar 

  • Balech E, Ehrlich MD (2008) Esquema biogeográfico del Mar Argentino. Revista de Investigación y Desarrollo Pesquero 19:45–75

    Google Scholar 

  • Bertness MD, Hacker SD (1994) Physical stress and positive associations among marsh plants. Am Nat 142:718–724

    Article  Google Scholar 

  • Bilenca N, Kravetz FO, Zuleta GA (1992) Food habits of Akodon azarae and Calomys laucha (Cricetidae, Rodentia) in agroecosystems of central Argentina. Mammalia 56:371–383

    Article  Google Scholar 

  • Bolger DT, Scott TA, Rotenberry JT (1997) Breeding bird abundance in an urbanizing landscape in coastal southern California. Conserv Biol 11:406–421

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Bonaventura SM, Piantanida MJ, Gurini L, Sánchez López MI (1991) Habitat selection in population of cricetine rodent in the region Delta (Argentina). Mammalia 55:339–354

    Article  Google Scholar 

  • Boschi EE (2000) Species of decapod crustaceans and their distribution in the american marine zoogeographic provinces. Revista de Investigacion y Desarrollo Pesquero 13:1–136

    Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cabrera AL, Willink A (1973) Biogeografía de America Latina, Serie de Biología, monografía n° 13. Washington, DC. Programa regional de Desarrollo Científico y Tecnológico, departamento de Asuntos Científicos, Organización de Estados Americanos, Washington

    Google Scholar 

  • Campos C, Ojeda R, Monge S, Dacar M (2001) Utilization of food resources by small and medium-sized mammals in the monte desert biome, Argentina. Austral Ecol 26:142–149

    Article  Google Scholar 

  • Canepuccia AD (2005) Effect of rainfall increased of grassland community structure of Southeast pampas region Argentina. Doctoral Thesis, Universidad Nacional de Mar del Plata

  • Canepuccia AD, Fanjul MS, Fanjul ME, Botto F, Iribarne OO (2008a) The intertidal burrowing crab Neohelice (=Chasmagnathus) granulata positively affect rodents in South Western Atlantic salt marshes. Estuar Coasts 31:920–930

    Article  Google Scholar 

  • Canepuccia AD, Farias AA, Escalante AH, Iribarne OO, Novaro A, Isacch JP (2008b) Differential responses of marsh predators to rainfall-induced habitat loss. Can J Zool 86:407–418

    Article  Google Scholar 

  • Canepuccia AD, Cicchino A, Escalante AH, Novaro A, Isacch JP (2009) Differential responses of marsh arthropods to rainfall-induced habitat loss. Zool Stud 48:174–183

    Google Scholar 

  • Canepuccia AD, Alberti J, Pascual J, Alvarez G, Cebrian J, Iribarne OO (2010) ENSO episodes modify plant/terrestrial-herbivore interactions in a southwestern Atlantic salt marsh. J Exp Mar Biol Ecol 396:42–47

    Article  Google Scholar 

  • Canepuccia AD, Pérez CF, Farina JL, Alemany D, Iribarne OO (2013) Dissimilarity in plant species diversity between salt marsh and neighbouring environments decreases as environmental harshness increases. Mar Ecol Prog Ser 494:135–148

    Article  Google Scholar 

  • Chapman VJ (1977) Wet coastal ecosystems. Ecosystems of the world, vol. 1. Elsevier Scientific, Amsterdam

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: An approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Contreras JR, Alvarado LJ (1968) Notas sobre los roedores cricétidos bonaerenses I Oryzomys nigripes flavescens en laguna Chasicó. Zoología Platense Investig Zoológicas y Paleontológicas 1:17–19

    Google Scholar 

  • Crain CM (2008) Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. J Ecol 96:166–173

    Google Scholar 

  • Crawley MJ (2007) The R Book. Wiley, New York

    Book  Google Scholar 

  • Dalby PL (1975) Biology of pampa rodents. Balcarce area, Argentina. Publications of the museum, Michigan state university. Biol Ser 5:149–272

    Google Scholar 

  • Day JW, Hall CAS Jr, Kemp WM, Yañez-Arancibia A (1989) Estuarine ecology. Wiley-Interscience, New York

    Google Scholar 

  • Development Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Available at: http://www.R-project.org

    Google Scholar 

  • Eubanks BW, Hellgren EC, Nawrot JR, Bluett RD (2011) Habitat associations of the marsh rice rat (Oryzomys palustris) in freshwater wetlands of southern Illinois. J Mammal 92:552–560

    Article  Google Scholar 

  • Gedan KB, Crain CM, Bertness MD (2009) Small-mammal herbivore control of secondary succession in New England tidal marshes. Ecol 90:430–440

    Article  Google Scholar 

  • Greenberg RS (2006) Tidal marshes: home for the few and the highly selected. Stud Avian Biol 32:2–10

    Google Scholar 

  • Greenberg RS, Maldonado JE (2006) Diversity and endemism in tidal marsh vertebrates. Stud Avian Biol 32:32–53

    Google Scholar 

  • Greenberg RS, Maldonado JE, Droege S, Mcdonald MV (2006) Tidal marshes: a global perspective on the evolution and conservation of their terrestrial vertebrates. Biosci 56:675–685

    Article  Google Scholar 

  • Hodara K, Busch M, Kittlein MJ, Kravetz FO (2000) Density-dependent habitat selection between maize cropfields and their borders in two rodent species (Akodon azarae and Calomys laucha) of Pampean agroecosystems. Evol Ecol 14:571–593

    Article  Google Scholar 

  • Isacch JP, Costa CSB, Rodrıguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900

    Article  Google Scholar 

  • Jaksic FM (2001) Ecological effects of El Niño in terrestrial ecosystems of Western South America. Ecography 24:241–250

    Article  Google Scholar 

  • Jaksic FM, Silva SI, Meserve PL, Gutiérrez JR (1997) A long-term study of vertebrate predator responses to an El niño (ENSO) disturbance in western South America. Oikos 78:341–354

    Article  Google Scholar 

  • Kincaid WB, Cameron GN, Carnes BA (1983) Patterns of habitat utilization in sympatric rodents on the Texas coastal prairie. Ecol 64:1471–1480

    Article  Google Scholar 

  • Kravetz F, Polop J (1983) Comunidades de roedores en agoecosistemas del departamento de Río Cuarto, Córdoba. Ecosur 10:1–18

    Google Scholar 

  • Kruchek BL (2004) Use of tidal marshland upland habitats by the marsh rice rat, (Oryzomys palustris). J Mammology 85:569–576

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers R, Harms KE, Luizao RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2:e1017

    Article  PubMed Central  PubMed  Google Scholar 

  • Mills JN, Ellis BA, Mckee KT, Maiztegui JI, Childs JE (1991) Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina. J Mammal 72:470–479

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. John Wiley and Sons, formerly Van Nostrand Reinhold, New York

    Google Scholar 

  • Mohd-Azlan J, Lawes MJ (2011) The effect of the surrounding landscape matrix on mangrove bird community assembly in north Australia. Biol Conserv 144:2134–2141

    Article  Google Scholar 

  • Naugle DE, Higgins KF, Nusser SM, Johnson WC (1999) Scale-dependent habitat use in three species of prairie wetland birds. Landsc Ecol 14:267–276

    Article  Google Scholar 

  • Nicolas V, Colyn M (2006) Relative efficiency of three types of small mammal traps in an African rainforest. Belg J Zool 136:107–111

    Google Scholar 

  • Pardiñas UFJ, Abba AM, Merino ML (2004) Micromamíferos (Didelphimorphia y Rodentia) del sudoeste de la provincia de Buenos Aires (Argentina): taxonomía y distribución. Mastozoología Neotropical 11:211–232

    Google Scholar 

  • Provensal MC, Priotto JW, Steinmann A, Polop JJ (1995) Analysis of trap association among Argentina’s wild cricetid species. Mastozoologia Neotropical 2:15–21

    Google Scholar 

  • Reig OA (1965) Datos sobre la comunidad de pequeños mamíferos de la región costera del partido de General Pueyrredón y de los partidos limítrofes (prov. de Buenos Aires, Argentina). Physis 69:205–211

    Google Scholar 

  • Spautz H, Nur N, Stralberg D, Chan Y (2006) Multiple-scale habitat relationships of tidal-marsh breeding birds in the San Francisco Bay Estuary. Stud Avian Biol 32:247–269

    Google Scholar 

  • Spencer SR, Cameron GN (1983) Behavioral dominance and its relationship to habitat patch utilization by the hispid cotton rat (Sigmodon hispidus). Behav Ecol Sociobiol 13:27–36

    Article  Google Scholar 

  • Steinmann AR, Priotto JW, Provensal MC, Polop JJ (1997) Odor incidence in the capture of wild rodents in Argentina. Mastozoología Neotropical 4:17–24

    Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Sci 297:1292–1296

    Article  CAS  Google Scholar 

  • Tabeni S, Ojeda RA (2003) Assessing mammal responses to perturbations in temperate aridlands of Argentina. J Arid Environ 55:715–726

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Valiela I, Fox SE (2008) Managing coastal wetlands. Sci 319:290–291

    Article  CAS  Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Biosci 51:807–815

    Article  Google Scholar 

  • Woodward FI, Diament AD (1991) Functional approaches to predicting the ecological effects of global change. Funct Ecol 5:202–212

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New York

    Google Scholar 

Download references

Acknowledgments

We are very grateful to M.S. Fanjul, J. Farina, C. Khatchikian, A. Farias, Editors and 2 anonymous reviewers for their valuable suggestions and corrections on early versions of the manuscript. The authors adhered to guidelines for the use of animals in research and to the legal requirements of Argentina. This project was supported by grants from the Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Agencia Nacional de Promoción Científica y Tecnológica (all to O.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro D. Canepuccia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 40 kb)

ESM 2

(DOC 48 kb)

ESM 3

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canepuccia, A.D., Pascual, J., Biondi, L.M. et al. Small Mammals Along SW-Atlantic Marshes: Diversity Correlates with Inland Habitats but Abundance Correlates with Marsh Characteristics. Wetlands 35, 1–12 (2015). https://doi.org/10.1007/s13157-014-0586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0586-2

Keywords

Navigation