Skip to main content
Log in

Progressive evaporation of brine of sebkha Mchiguig, central Tunisia: a geo-economical comparative study of salt and brine

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

This work is meant to study the formation of salt through a progressive evaporation of water of sebkha Mchiguig. The precipitated salt in the case of sebkha Mchiguig is variable along the progressive evaporation. Weights of salt before each phase of precipitation indicate a heterogeneous evaporation process cumulating at 394 g L−1. With an increasing evaporation of Mchiguig brine, the number of precipitated mineral species increased. The cumulative number of species along the evaporation process reaches 12: Halite (NaCl) (81–96%), epsomite (MgSO4·7H2O) (7–14%), magnesite (MgCO3) (1–3%), polyhalite K2Ca2Mg(SO4)4, 2H2O (2–5%), the ikaite CaCO3.6(H2O) (2.1%), langbeinite K2Mg2(SO4)3 (0.4%), celestite SrSO4 (2.1%), sodium ozonide (NaO3) (1.5%), allenite MgSO3(H2O)6 (0.8%) hydromagnesite Mg5(CO3)4(OH)2·4H2O (0.2%) and magnesium chloride MgCl2 (0.3%). Also, the thermodynamic theoretical modeling of the Mchiguig brine shows convergence with geochemical and mineralogical experimental data. The saline system of Mchiguig represents a geo-economic interest by its big quantity of halite and varieties of accessory minerals. However, a special care should be given to environmental and hydrodynamic repercussions of the overuse of water budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahams SC, Bernstein JL (1977) Accuracy of an automatic diffractometer. Measurement of the sodium chloride structure factors. Acta Crystallogr 18(1965):926–932

    Google Scholar 

  • Akao M, Iwai S (1977) The hydrogen bonding of hydromagnesite. Acta Crystallogr Sect B 33:1273–1275

    Article  Google Scholar 

  • Antao SM (2012) Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): confirmation of expected variations within SO4 groups. Am Mineral 97:661–665

    Article  Google Scholar 

  • Bassi IW, Polato F, Calcaterra M, Bart JCJ (1982) A new layer structure of MgCl2 with hexagonal close packing of the chlorine atoms. Zeitschrift fuer Kristallogr 159(1982):297–302

    Google Scholar 

  • Baur WH (1964a) On the crystal chemistry of salt hydrates. IV. The refinement of the crystal structure of MgSO4*7H2O (epsomite). Note Mg z-coordinate altered in order to reproduce Mg-O bond lengths locality: synthetic. Acta Crystallogr 17:1361–1369

    Article  Google Scholar 

  • Baur OWH (1964b) The crystal chemistry of salt hydrates. IV. The refinement of the crystal structure of Mg SO4 (H2O)7 (epsomite). Acta Crystallogr A 17(1964):1361–1369

    Article  Google Scholar 

  • Ben Smida N (2016) Comparative study of exorheic (Boujmal and El Melah) and endorheic (Mchiguig and Mhabeul) saline systems: a geoeconomic approach. In: Institut Supérieur des Sciences et Techniques des Eaux de Gabès, University of Gabes

  • Bindi L (2005) Reinvestigation of the crystal structure of polyhalite, K2Ca2Mg(SO4)4*2H2O. Acta Crystallogr Sect E 61(2005):35–36

    Google Scholar 

  • Calleri M, Gavetti A, Ivaldi G, Rubbo M (1984) Synthetic epsomite, MgSO47H2O: (1984). Absolute configuration and surface features of the complementary {111} formsconfiguration and surface features of the complementary 111 forms. Acta Crystallogr Sect B 40(1984):218–222

    Article  Google Scholar 

  • Essefi E (2009) Multidisciplinary study of Sidi El Hani Saline environment: the history and the climatic variability. (Master thesis). In: Faculty of sciences of Sfax, University of Sfax

  • Essefi E, Touir J, Tagorti MA, Yaich C (2013) Effect of the groundwater contribution, the climatic change, and the human-induced activities on the hydrological behavior of discharge playas: a case study Sidi El Hani discharge playa, Tunisian Sahel. Arab J Geosci 6(10):3997–4009. https://doi.org/10.1007/s12517-012-0659-6

    Article  Google Scholar 

  • Flack H (1973) Etude de la structure cristalline du sulfite de magnesium hexahydrate, MgSO3 (H2O)6. Acta Crystallogr B 29(1973):656–658

    Article  Google Scholar 

  • Hesse KF, Kuppers H, Suess E (1963) Refinement of the structure of ikaite, CaCO3*6(H2O) locality: Bransfield strait. Antarctica Zeitschrift fur Kristallogr 163(1983):227–231

    Google Scholar 

  • Jürgens B, Irran E, Schneider J, Wolfgang D (2000) Schnick trimerization of NaC2N3 to Na3C6N9 in the solid: ab initio crystal structure determination of two polymorphs of NaC2N3 and of Na3C6N9 from X-ray powder diffractometry. Inorg Chem 39:665–670. https://doi.org/10.1021/ic991044f

    Article  Google Scholar 

  • Kbir-Ariguib N, Ben H, Chehimi D, Zayani L (2001) Treatment of Tunisian salt lakes using solubility phase diagrams. Pure Appl Chem 73:761–770. http://www.esrifrance.fr/sig2005/communications2005/smida_habib/smida.htm

    Article  Google Scholar 

  • Klein W, Armbruster K, Jansen M (1998) Synthesis and crystal structure determination of sodium ozonide. Chem Commun 1998:707–708

    Article  Google Scholar 

  • Maslen ENA, Streltsov V, Streltsova NR (1993) X-ray study of the electron density in magnesite MgCO3. Acta Crystallogr Sect B 49(1993):980–984

    Article  Google Scholar 

  • Mereiter K (1979) Refinement of the crystal structure of langbeinite, K2Mg2(SO4)3. Neues Jahrbuch fur Mineral Monatshefte 1979:182–188

    Google Scholar 

  • Mihajlović T, Lengauer T, Ntaflos L, Lolitsch U, Tillmanns E (2004) Two new minerals, C. rondorfite, Ca8Mg[SiO4]4Cl2, and almarudite, K(box,Na)2(Mn,Fe,Mg)2(Be,Al)3[Si12O30], and a study of iron-rich wadalite, Ca12[(Al8Si4Fe2)O32]C16, from the Bellerberg (Bellberg) volcano, Eifel, Germany Locality: Bellerberg volcano lava field, 2 km N of Mayen, Eastern Eifel volcanic area, Eifel, Germany. Neues Jahrbuch fur Mineral Abhandlungen 179:265–294

    Google Scholar 

  • Oh KD, Morikawa H, Iwai SI, Aoki H (1973) The crystal structure of magnesite. Am Mineral 58:1029–1033

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (2017) 3--a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chap. A43, p 497

  • Shah SMI (1980) Stratigraphy and economic geology of Central Salt Range Geological Survey of Pakistan. Geol Surv Pak 1980:52

    Google Scholar 

  • Smida H, Zairi M, Trabelsi R, Bendhia H (2006) Etude et gestion des Ressources eneau dans une région aride par le SIG: Cas de la région de Regueb—Sidi Bouzid—Tunisie. Laboratoire Eau, Energie et Environnement (LR3E). Ecole Nationale d’Ingénieurs de Sfax

  • Tagorti MA, Essefi E, Touir J, Guellala R, Yaich C (2013) Geochemical controls of groundwaters upwelling in saline environments: case study the discharge playa of Sidi El Hani (Sahel, Tunisia). J Afr Earth Sci 86:1–9. https://www.sciencedirect.com/science/article/pii/S1464343X13001003

  • Tagorti MA, Guellala R, Gallala W, Essefi E, Tlig S (2014) Geochemical and hydrogeological studies of a sodium sulphate deposits: the case of Sabkhet El Ghine Oum El Khialate, southeast Tunisia. Carbonates Evaporites 29(3):299–307. https://doi.org/10.1007/s13146-013-0180-3

    Article  Google Scholar 

  • Warren JK (2016) Potash resources: occurrences and controls. Evaporites 2016:1081–1185. https://doi.org/10.1007/978-3-319-13512-0

    Article  Google Scholar 

  • Wyckoff RWG (1963) Interscience publishers, New York, New York note: cadmium chloride structure. Cryst Struct 1:239–444

    Google Scholar 

  • Zatout M, Hacini M, Hamzaoui A, M’nif H (2017) A Sequence crystallization during isotherm evaporation of southern Algeria chott Baghdad natural brine. J Fund Appl Sci 9(2):959–970. https://www.ajol.info/index.php/jfas/article/view/156149, https://www.jle.com/fr/revues/sec/edocs/identification_de_zones_de_recharge_induite_daquiferes_a_laide_dun_systeme_dinformation_geographique_cas_de_la_nappe_de_c_272303/article.phtml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elhoucine Essefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essefi, E., Smida, N.B., Jandoubi, I. et al. Progressive evaporation of brine of sebkha Mchiguig, central Tunisia: a geo-economical comparative study of salt and brine. Carbonates Evaporites 35, 59 (2020). https://doi.org/10.1007/s13146-020-00592-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00592-7

Keywords