Skip to main content
Log in

Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 August 2018

Abstract

This study contributes to the development of an algorithm to retrieve the Earth’s surface downward longwave radiation (DLR) for 2nd Geostationary Earth Orbit KOrea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A)/Advanced Meteorological Imager (AMI). Regarding simulation data for algorithm development, we referred to Clouds and the Earth’s Radiant Energy System (CERES), and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis data. The clear sky DLR calculations were in good agreement with the Gangneung-Wonju National University (GWNU) Line-By-Line (LBL) model. Compared with CERES data, the Root Mean Square Error (RMSE) was 10.14Wm−2. In the case of cloudy sky DLR, we estimated the cloud base temperature empirically by utilizing cloud liquid water content (LWC) according to the cloud type. As a result, the correlation coefficients with CERES all sky DLRs were greater than 0.99. However, the RMSE between calculated DLR and CERES data was about 16.67Wm−2, due to ice clouds and problems of mismatched spatial and temporal resolutions for input data. This error may be reduced when GK-2A is launched and its products can be used as input data. Accordingly, further study is needed to improve the accuracy of DLR calculation by using high-resolution input data. In addition, when compared with BSRN surface-based observational data and retrieved DLR for all sky, the correlation coefficient was 0.86 and the RMSE was 31.55 Wm−2, which indicates relatively high accuracy. It is expected that increasing the number of experimental Cases will reduce the error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustine, J. A., J. J. DeLuisi, and C. N. Long, 2000: SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Amer. Meteor. Soc., 81, 2341–2358.

    Article  Google Scholar 

  • Clouds and the Earth’s Radiant Energy System, cited 2013: CERES_ISCCP-D2like Ed3A Data Quality Summary (11/14/2013).

    Google Scholar 

  • Cho, H. K., J. Kim, Y. Jung, Y. G. Lee, and B. Y. Lee, 2008: Recent changes in downward longwave radiation at King Sejong Station, Antarctica. J. Climate, 21, 5764–5776, doi:10.1175/2008JCLI1876.1.

    Article  Google Scholar 

  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15761–15785, doi:10.1029/92JD-01419.

    Article  Google Scholar 

  • Darnell, W. L., S. K. Gupta, and W. F. Staylor, 1983: Downward longwave radiation at the surface from satellite measurements. J. Clim. Appl. Meteor., 22, 1956–1960, doi:10.1175/1520-0450(1983)022<1956: DLRATS>2.0.CO;2.

    Article  Google Scholar 

  • Darnell, W. L., S. K. Gupta, and W. F. Staylor, 1986: Downward longwave surface radiation from sun-synchronous satellite data: Validation of methodology. J. Clim. Appl. Meteor., 25, 1012–1021, doi: 10.1175/1520-0450(1986) 025<1012:DLSRFS>2.0.CO;2.

    Article  Google Scholar 

  • Donaldson Jr, R. J., 1955: The measurement of cloud liquid-water content by radar. J. Appl. Meteor. Climatol., 12, 238–244, doi:10.1175/1520-0469(1955)012<0238:TMOCLW>2.0.CO;2.

    Google Scholar 

  • Falcone Jr, J. V., L. W. Abreu, and E. P. Shettle, 1979: Atmospheric Attenuation of Millimeter and Submillimeter Waves: Models and Computer Code. No. AFGL-TR-79-0253, 76 pp.

    Book  Google Scholar 

  • Frouin, R., C. Gautier, and J.-J. Morcrette, 1988: Downward longwave irradiance at the ocean surface from satellite data: Methodology and in situ validation. J. Geophys. Res., 93, 597–619, doi:10.1029/JC093iC-01p00597.

    Article  Google Scholar 

  • Fung, I. Y., D. E. Harrison, and A. A. Lacis, 1984: On the variability of the net longwave radiation at the ocean surface. Rev. Geophys., 22, 177–193, doi:10.1029/RG022i002p00177.

    Article  Google Scholar 

  • Gautier, C., G. Diak, and S. Masse, 1980: A simple physical model to estimate incident solar radiation at the surface from GOES satellite data. J. Appl. Meteor., 19, 1005–1012, doi:10.1175/1520-0450(1980)019 <1005:ASPMTE>2.0.CO;2.

    Article  Google Scholar 

  • Gupta, S. K., 1989: A parameterization for longwave surface radiation from sun-synchronous satellite data. J. Climate, 2, 305–320, doi:10. 1175/1520-0442(1989)002<0305:APFLSR>2.0.CO;2.

    Article  Google Scholar 

  • Gupta, S. K., A. C. Wilber, and W. L. Darnell, 1992: A parameterization for longwave surface radiation from satellite data: Recent improvements. J. Appl. Meteor. Climatol., 31, 1361–1367.

    Article  Google Scholar 

  • Gupta, S. K., A. C. Wilber, W. L. Darnell, and J. T. Suttles, 1993: Longwave surface radiation over the globe from satellite data: An error analysis. Int. J. Remote Sens., 14, 95–114, doi:10.1080/01431169308904323.

    Article  Google Scholar 

  • Gupta, S. K., A. C. Wilber, C. H. Whitlock, and N. A. Ritchey, 1997: An Algorithm for Longwave Surface Radiation Budget for Total Skies. Cloud and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document. CERES ATBD Subsystem 4.6.3, Release 2.2, 21 pp.

    Google Scholar 

  • Gupta, S. K., A. C. Wilber, C. H. Whitlock, N. A. Ritchey, P. W. Stackhouse Jr, and G. G. Gibson, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 2691–2710.

    Article  Google Scholar 

  • Gupta, S. K., A. C. Wilber, D. P. Kratz, T. Zhang, P. W. Stackhouse Jr, T. Zhang, and V. E. Sothcott, 2010: Improvement of surface longwave flux algorithms used in CERES processing. J. Appl. Meteor. Climatol., 49, 1579–1589, doi:10.1175/2010JAMC2463.1.

    Article  Google Scholar 

  • Hecht, J. E., and B. Orlando, 1998: Can the Kyoto protocol support biodiversity conservation? Legal and financial challenges. Environ. Law Rep. News Anal., 28, 10508–10518.

    Google Scholar 

  • Hicks, B. B., J. J. DeLuisi, and D. Matt, 1996: The NOAA Integrated Surface Irradiance Study (ISIS): A new surface radiation monitoring network. Bull. Amer. Meteor. Soc., 77, 2857–2864, doi:10.1175/1520-0477(1996)077<2857:TNISIS>2.0.CO;2.

    Article  Google Scholar 

  • Hutchison, K., A. Huang, and E. Wong, 2011: Joint Polar Satellite System (JPSS) VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD). Joint Polar Satellite System (JPSS) Ground Project. Code 474, 35 pp.

  • Kato, S., and N. G. Loeb, 2005: Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra. J. Geophys. Res., 110, D07202, doi:10.1029/2004JD005308.

    Article  Google Scholar 

  • Lee, H.-T., and R. G. Ellingson, 2002: Development of a nonlinear statistical method for estimating the downward longwave radiation at the surface from satellite observations. J. Atmos. Oceanic Technol., 19, 1500–1515, doi:10.1175/1520-0426(2002)019<1500:DOANSM> 2.0.CO;2.

    Article  Google Scholar 

  • Lee, H.-T., I. Laszlo, and A. Gruber, 2010: Advanced Baseline Imager (ABI) Earth Radiation Budget -Downward Longwave Radiation: Surface (DLR). Algorithm Theoretical Basis Document. Version 2, 41 pp.

  • Loeb, N. G., and Coauthors, 2003: Angular distribution models for top-ofatmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission Satellite. Part I: Methodology. J. Appl. Meteor. Climatol., 42, 240–265, doi:10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.

    Google Scholar 

  • Loeb, N. G., and Coauthors, 2005: Angular distribution models for top-ofatmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22, 338–351, doi:10.1175/JTECH1712.1.

    Google Scholar 

  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. A. Wielicki, P. O. R. Hinton, S. K. Nolan, and D. R. Doelling, 2007: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part II: Validation. J. Atmos. Oceanic Technol., 24, 564–584, doi:10.1175/JTECH1983.1.

    Google Scholar 

  • McArthur, B., 2005: Baseline Surface Radiation Network (BSRN). World Climate Research Programme. WMO/TD-No. 1274, 176 pp.

    Google Scholar 

  • Michael, A. B., and P. B. Gail, 2015: Physics of Radiation and Climate. CRC Press, 513 pp.

    Google Scholar 

  • Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider, 1992: Stratocumulus Cloud Properties Derived from Simultaneous Satellite and Island-Based Instrumentation During FIRE. J. Appl. Meteor. Climatol., 31, 317–339, doi:10.1175/1520-0450(1992)031<0317:SCPDFS> 2.0.CO;2.

    Article  Google Scholar 

  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data-Part I: Algorithms. IEEE T. Geosci. Remote, 49, 4374–4400, doi:10.1109/TGRS.2011.2144601.

    Article  Google Scholar 

  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WRMC): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 2115–2136, doi:10.1175/1520-0477(1998)079 <2115:BSRNBW>2.0.CO;2.

    Article  Google Scholar 

  • Santos, C. A. C. D., B. B. D. Silva, T. V. R. Rao, P. Satyamurty, and A. O. Manzi, 2011: Downward longwave radiation estimates for clear-sky conditions over northeast Brazil. Rev. Bras. Meteorol., 26, 443–450, doi:10.1590/S0102-77862011000300010.

    Article  Google Scholar 

  • Schmetz, P., J. Schmetz, and E. Raschke, 1986: Estimation of daytime downward longwave radiation at the surface from satellite and grid point data. Theor. Appl. Climatol., 37, 136–149.

    Article  Google Scholar 

  • Smith Jr, W. L., P. Minnis, J. M. Alvarez, T. Uttal, J. M. Intrieri, T. P. Ackerman, and E. Clothiaux, 1993: Development of methods for inferring cloud thickness and cloud thickness and cloud-base height from satellite radiance data. Extended Abstract, The FIRE Cirrus Science Results 1993, NASA Langley Research Center, 32-35.

    Google Scholar 

  • Stephens, G. L., M. Wild, P. W. Stackhouse Jr, T. L'Ecuyer, S. Kato, and D. S. Henderson, 2012: The global character of the flux of downward longwave radiation. J. Climate, 25, 2329–2340, doi:10.1175/JCLI-D-11-00262.1.

    Article  Google Scholar 

  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 1201–1221, doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2.

    Article  Google Scholar 

  • Tarpley, J. D., 1979: Estimating incident solar radiation at the surface from geostationary satellite data. J. Appl. Meteor., 18, 1172–1181, doi:10. 1175/1520-0450(1979)018<1172:EISRAT>2.0.CO;2.

    Article  Google Scholar 

  • William, E., and C. Adriano, 2017: Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Applications. Elsevier, 860 pp.

    Google Scholar 

  • Yoo, C.-S., C.-K. Shin, and Y.-N. Yoon, 2004: Estimation and Analysis of Precipitatable Water. J. Korean Soc. Civil Eng., 24, 413–420 (in Korean with English abstract).

    Google Scholar 

  • Yoo, J.-M., and Coauthors, 2007: Intercomparison of shortwave radiative transfer models for a Rayleigh atmosphere. J. Korean Earth Sci. Soc., 28, 298–310, doi:10.5467/JKESS.2007.28.3.298.

    Article  Google Scholar 

  • Yoshida, R., H. Okamoto, Y. Hagihara, and H. Ishimoto, 2010: Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio. J. Geophys. Res., 115, doi:10.1029/2009JD012334.

  • Zhou, C., and K. Wang, 2015: Evaluation of surface fluxes in ERA-Interim using flux tower data. J. Climate, 29, 1573–1582, doi:10.1175/JCLI-D-15-0523.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Tae Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, SH., Lee, KT., Rim, SH. et al. Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI. Asia-Pacific J Atmos Sci 54, 237–251 (2018). https://doi.org/10.1007/s13143-018-0007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-018-0007-1

Key words

Navigation