Skip to main content
Log in

Effects of 2-m air temperature assimilation and a new near-surface observation operator on the NCEP Gridpoint statistical-interpolation system

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, we assimilate 2-m air temperature data with the National Centers for Environmental Prediction (NCEP) regional Gridpoint Statistical Interpolation (GSI) using the WRF-NMM model forecast as a first guess. Single time analysis experiments are conducted to test the impact of 2-m air temperature data on the analysis system and the results are compared with the control run without using 2-m air temperature data. The effort is focused on understanding the characteristics of observation innovations of the 2-m air temperature data. Modifications to background errors and a simple test of nonlinear quality control are also considered. The incorporation of a comprehensive near-surface observation operator based on Monin-Obukhov similarity theory is described and tested for possible operational use with the NCEP regional GSI system. The results from this new forward operator are compared with those from the existing simple forward operator. According to the results, mesonet 2-m temperature data were found to have a considerable amount of outliers compared with other 2-m temperature data. The nighttime western and central US domains indicated a model warm bias. Stations with large innovations are distributed uniformly in the nighttime western and central domains, while they are mainly located in the large cities in the daytime eastern domain. The statistical analysis of observation innovations showed that introduction of the new forward model can reduce root-mean-square errors in observation increment statistics. The results of a short assimilation experiment indicate that the new forward operator can be employed as a short-term strategy for near-surface data assimilation in the NCEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, E. and H. Järvinen, 1999: Variational quality control. Quart. J. Roy. Meteor. Soc., 125, 697–722.

    Google Scholar 

  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: implementation and initial results. Mon. Wea. Rev., 132, 897–914.

    Article  Google Scholar 

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495–518.

    Article  Google Scholar 

  • Bergman, K., 1979: Multivariate analysis of temperature and winds using optimum interpolation. Mon. Wea. Rev., 107, 1423–1444.

    Article  Google Scholar 

  • Chen, F., Z. Janjic’, and K. Mitchell, 1997: Impact of atmospheric surfacelayer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boun.-Layer Meteorol., 85, 391–421.

    Article  Google Scholar 

  • COMET Program updated, 2001: Understanding Data Assimilation: How Models Create Their Initial Conditions [Available online at http://meted.ucar.edu/nwp/pcu1/ic6/index.htm].

  • Derber, J. C., D. F. Parrish, and S. J. Lord, 1991: The new global operational analysis system at the National Meteorological Center. Wea. Forecasting, 6, 538–547.

    Article  Google Scholar 

  • Dey, C. H., and L. L. Morone, 1985: Evolution of the National Meteorological Center global data assimilation system: January 1982–December 1983. Mon. Wea. Rev., 113, 304–318.

    Article  Google Scholar 

  • DiMego, G. J., 1988: The National Meteorological Center Regional Analysis System. Mon. Wea. Rev., 116, 977–1000.

    Article  Google Scholar 

  • ____, G. J., Y. Lin, M. Pondeca, and S.-J. Lee, 2005: The real-time mesoscale analysis (RTMA) — A first step towards an analysis of record. Science and Technology Seminar, 5 October 2005, Washington, DC, USA. [Available online at http://www.emc.ncep.noaa.gov/research/NCEP-EMCModelReview2005/WR_NCEP_REVIEW_AOR.pdf.]

  • Doswell, C. A., and S. Lasher-Trapp, 1997: On measuring the degree of irregularity in an observing network. J. Atmos. Oceanic Technol., 14, 120–132

    Article  Google Scholar 

  • Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96: 715–721.

    Article  Google Scholar 

  • Guo, Y.-R., D.-H. Shin, J.-H. Lee, Q.-N. Xiao, D. M. Barker, and Y.-H. Kuo, 2002: Application of the MM5 3DVAR system for a heavy rain case over the Korean Peninsula. PSU/NCAR Mesoscale Model Users’ Workshop, Boulder, CO, NCAR. [Available online at http://www.mmm.ucar.edu/mm5/workshop/ws02/Guo.pdf.]

  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.

    Article  Google Scholar 

  • Holm, E., E. Andersson, A. Beljaas, P. Lopez, J-F. Mahfouf, A. J. Simmons, and J-N. Thepaut, 2002: Assimilaiton and modeling of the hydrological cycle: ECMWF’s status and plans. ECMWF Tech Memo 383.

  • Janjic, Z. I., J. P. Gerrity, and S. Nickovic, 2001: An alternative approach to nonhydrostatic modeling. Mon. Wea. Rev., 129, 1164–1178.

    Article  Google Scholar 

  • Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system. Wea. Forecasting, 4, 335–342.

    Article  Google Scholar 

  • Kimeldorf, G., and G. Wahba, 1970: A correspondence between Bayesian estimation of stochastic processes and smoothing by splines. Ann. Math. Stat., 41, 495–502.

    Article  Google Scholar 

  • Lee, S.-J., D. F. Parrish, W.-S. Wu, M. Pondeca, D. Keyser, and G. DiMego, 2005: Use of surface mesonet data in the NCEP regional gridpoint statistical-interpolation (GSI) system. 21st Conf. on Wea. Analysis and Forecasting/17th Conf. on Numerical Wea. Prediction, 1–5 August 2005, Washington, DC. [Available online at http://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_95238. htm.]

  • Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 1177–1194.

    Article  Google Scholar 

  • Myrick, D. T., J. D. Horel, and S. M. Lazarus, 2005: Local adjustment of the background error correlation for surface analyses over complex terrain. Wea. Forecasting, 20, 149–160.

    Article  Google Scholar 

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s Spectral Statistical-Interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763.

    Article  Google Scholar 

  • Pondeca, M. S.F.V., G. S. Manikin, S.-Y. Park, D. F. Parrish, W.-S. Wu, G. DiMego, J. C. Derber, S. Benjamin, J. D. Horel, S. M. Lazarus, L. Anderson, B. Colman, G. E. Mann, and G. Mandt, 2007: The development of the real time mesoscale analysis system at NCEP. 23rd Conf. on IIPS, 13–18 January 2007, San Antonio, TX. [Available online at http://ams.confex.com/ams/87ANNUAL/techprogram/paper_ 118813.htm.]

  • Purser, R. J., W.-S. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131, 1536–1548.

    Article  Google Scholar 

  • Ruggiero, F. H., K. D. Sashegyi, R. V. Madala, and S. Raman, 1996: The use of surface observations in four-dimensional data assimilation using a mesoscale model. Mon. Wea. Rev., 124, 1018–1033.

    Article  Google Scholar 

  • Urban, B., 1996: Coherent observation operators for surface data assimilation with application to snow depth. J. Appl. Meteor., 35, 258–270.

    Article  Google Scholar 

  • Wade, C. G., 1987: A quality control program for surface mesometeorological data. J. Atmos. Oceanic Technol., 4, 435–453.

    Article  Google Scholar 

  • Wu, W.-S., 2005: Background error for NCEP’s GSI analysis in regional mode. 4th WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography, 18–22 April 2005, Prague, Czech Republic. [Available online at http://www.emc.ncep.noaa.gov/gmb/treadon/gsi/documents/papers/WMO_Da_4.doc.]

  • ____, R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 2905–2916.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Jae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Parrish, D.F., Park, SY. et al. Effects of 2-m air temperature assimilation and a new near-surface observation operator on the NCEP Gridpoint statistical-interpolation system. Asia-Pacific J Atmos Sci 47, 353–376 (2011). https://doi.org/10.1007/s13143-011-0022-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-011-0022-y

Key words