Skip to main content

Advertisement

Log in

Future Perspectives of Radionanomedicine Using the Novel Micelle-Encapsulation Method for Surface Modification

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The emerging radionanomedicine has multifunctional and theranostic purposes. For these purposes, radionanomedicine should achieve the efficient and specific delivery of therapeutic agents by multifunctional characteristics, using low amounts of nanomaterials in vivo. Recent research on radiolabeled micelle-encapsulated nanomaterials has been made on the their efficacy and safety using a one-step surface modification method (Jeong’s method). This one-step multifunctional approach to the nanoparticle can be the important challenge in producing effective nanoplatforms for cancer imaging and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muthu MS, Wilson B. Multifunctional radionanomedicine: a novel nanoplatform for cancer imaging and therapy. Nanomedicine (Lond). 2010;5:169–71.

    Article  CAS  Google Scholar 

  2. Lee DS, Im H-J, Lee Y-S. Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine. 2015;11:795-810

  3. Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. 2009.

  4. Muthu MS, Rawat MK, Mishra A, Singh S. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine. 2009;5:323–33.

    Article  CAS  PubMed  Google Scholar 

  5. Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine. 2008;3:137–40.

    Article  PubMed  Google Scholar 

  6. Ting G, Chang C-H, Wang H-E. Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. Anticancer Res. 2009;29:4107–18.

    CAS  PubMed  Google Scholar 

  7. Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics. 2014;4:47.

    Article  PubMed Central  CAS  Google Scholar 

  8. Niccoli Asabella A, Cascini GL, Altini C, Paparella D, Notaristefano A, Rubini G. The copper radioisotopes: a systematic review with special interest to 64Cu. BioMed Res Int. 2014;2014:786463.

  9. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009;24:379–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fischer G, Seibold U, Schirrmacher R, Wängler B, Wängler C. 89Zr, a radiometal nuclide with high potential for molecular imaging with PET: chemistry, applications and remaining challenges. Molecules. 2013;18:6469–90.

    Article  CAS  PubMed  Google Scholar 

  11. Kam B, Teunissen J, Krenning E, et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:103–12.

    Article  PubMed Central  CAS  Google Scholar 

  12. Sainz-Esteban A, Prasad V, Schuchardt C, Zachert C, Carril JM, Baum RP. Comparison of sequential planar 177Lu-DOTA-TATE dosimetry scans with 68Ga-DOTA-TATE PET/CT images in patients with metastasized neuroendocrine tumours undergoing peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging. 2012;39:501–11.

    Article  CAS  PubMed  Google Scholar 

  13. Goffredo V, Paradiso A, Ranieri G, Gadaleta CD. Yttrium-90 (90 Y) in the principal radionuclide therapies: An efficacy correlation between peptide receptor radionuclide therapy, radioimmunotherapy and transarterial radioembolization therapy. Ten years of experience (1999–2009). Crit Rev Oncol Hematol. 2011;80:393–410.

    Article  PubMed  Google Scholar 

  14. Jeong JM, Chung J-K. Therapy with 188Re-labeled radiopharmaceuticals: an overview of promising results from initial clinical trials. Cancer Biother Radiopharm. 2003;18:707–17.

    Article  CAS  PubMed  Google Scholar 

  15. Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today. 2009;4:399–413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Goel S, Chen F, Ehlerding EB, Cai W. Intrinsically radiolabeled nanoparticles: an emerging paradigm. Small. 2014;10:3825–30.

    Article  CAS  PubMed  Google Scholar 

  17. Sun M, Hoffman D, Sundaresan G, Yang L, Lamichhane N, Zweit J. Synthesis and characterization of intrinsically radiolabeled quantum dots for bimodal detection. Am J Nucl Med Mol Imaging. 2012;2:122.

    PubMed Central  PubMed  Google Scholar 

  18. Xing Y, Zhao J, Conti PS, Chen K. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics. 2014;4:290.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110:2858–902.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc. 2007;129:13987–96.

    Article  CAS  PubMed  Google Scholar 

  21. Åkerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci USA. 2002;99:12617–21.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lee YK, Jeong JM, Hoigebazar L, et al. Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J Nucl Med. 2012;53:1462–70.

    Article  CAS  PubMed  Google Scholar 

  23. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science. 2002;298:1759–62.

    Article  CAS  PubMed  Google Scholar 

  24. Carion O, Mahler B, Pons T, Dubertret B. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat Protoc. 2007;2:2383–90.

    Article  CAS  PubMed  Google Scholar 

  25. Samanta A, Maiti KK, Soh KS, et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed Engl. 2011;50:6089–92.

    Article  CAS  PubMed  Google Scholar 

  26. Jun BH, Hwang DW, Jung HS, et al. Ultrasensitive, biocompatible, quantum-dot-embedded silica nanoparticles for bioimaging. Adv Funct Mater. 2012;22:1843–9.

  27. Fan H, Yang K, Boye DM, et al. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science. 2004;304:567–71.

    Article  CAS  PubMed  Google Scholar 

  28. Wu H, Zhu H, Zhuang J, Yang S, Liu C, Cao YC. Water-soluble nanocrystals through dual-interaction ligands. Angew Chem Int Ed. 2008;47:3730–4.

    Article  CAS  Google Scholar 

  29. Yang BY, Moon SH, Seelam SR, et al. Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomedicine (Lond). 2015;10:1899-910.

  30. Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med. 2012;4:128ra39.

    PubMed  Google Scholar 

  31. Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release. 2009;140:166–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Research Foundation of Korea (2014M2A2A7045043 and 2012R1A1A2008799).

Conflict of Interest

Yung-Sang Lee, Yong-il Kim, and Dong Soo Lee declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors. The manuscript has not been published before or is not under consideration for publication anywhere else and has been approved by all co-authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Kim, Yi. & Lee, D.S. Future Perspectives of Radionanomedicine Using the Novel Micelle-Encapsulation Method for Surface Modification. Nucl Med Mol Imaging 49, 170–173 (2015). https://doi.org/10.1007/s13139-015-0358-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-015-0358-9

Keywords

Navigation