Skip to main content
Log in

Single-species model under seasonal succession alternating between Gompertz and Logistic growth and impulsive perturbations

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

This paper proposes a single species system under seasonal succession and impulsive perturbations. The system is composed of two processes: one governed by the Gompertz equation, and the other modelled by the Logistic equation. The two processes are connected by impulse perturbations. Some very general, weak criteria on the permanence, existence, uniqueness and global stability of the positive periodic solution are established by analysis approaches based on the theory of discrete dynamical systems. The theoretical results are demonstrated by special examples and numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allee, W.C., Emerson, A.E., Park, O.: Principals of Animal Ecology. Saunders, Philadelphia (1949)

    Google Scholar 

  • Atkinson, A.: Life cycle strategies of epipelagic copepods in the Southern Ocean. J. Marine Syst. 15, 289–311 (1998)

    Article  Google Scholar 

  • Bainov, D., Simeonov, P.: Impulsive differential equations: periodic solution and applications. Longman, London (1993)

    MATH  Google Scholar 

  • Beaugrand, G., Ibanez, F., Lindley, J.A.: Geographical distribution and seasonal and diel changes in the diversity of calanoid copepods in the North Atlantic and North Sea. Mar. Ecol. Prog. Ser. 219, 189–203 (2001)

    Article  Google Scholar 

  • Cui, J.A., Chen, L.S.: The effect of diffusion on the time varying logistic population growth. Comput. Math. Applic. 36(3), 1–9 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Davidson, F.A.: Growth and senescence in purebred jersey cows. University of lllinois Agricultural Experiment Station vol 302, pp. 192–199 (1928)

  • DeAngelis, D.L., Trexler, J.C., Donalson, D.D.: Competition dynamics in a seasonally varying wetland. In: Cantrell, S., Cosener, C., Ruan, S. (eds.) Spatial Ecology. chap 1, pp. 1–13. CRC Press/Chapman and Hall, London (2009)

  • DuBowy, P.J.: Waterfowl communities and seasonal environments: temporal variabolity in interspecific competition. Ecology 69, 1439–1453 (1988)

    Article  Google Scholar 

  • Funasaki, E., Kot, M.: Invasion and chaos in a periodically pulsed mass-action chemostat. Theor. Pop. Biol. 244(2), 203–224 (1993)

    Article  MATH  Google Scholar 

  • Gompertz, B.: On the nature of the function expressive of the law of human mortality and on a new method of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–585 (1825)

    Article  Google Scholar 

  • Hsu, S.B.: A competition model for a seasonally fluctuating nutrient. J. Math. Biol. 9, 115–132 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  • Hsu, S.B., Zhao, X.Q.: A Lotka-Volterra competition model with seasonal succession. J. Math. Biol. 64(1), 109–130 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Hu, S.S., Tessier, A.J.: Seasonal succession and the strength of intra-and interspecific competition in a Daphnia assemblage. Ecology 76(7), 2278–2294 (1995)

    Article  Google Scholar 

  • Hui, J., Chen, L.-S.: A single species model with impulsive diffusion. Acta Mathematicae Applicate Sinica 21(1), 43–48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang, J.F., Niu, L., Zhu, D.J.: On the complete classification of nullcline stable competitive three-dimensional Gompertz models. Nonlinear Anal. RWA 20, 21–35 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Klausmeier, C.A.: Floquet theory: a useful tool for understanding nonequilibrium dynamics. Theor. Ecol 1, 153–163 (2008)

    Article  Google Scholar 

  • Klausmeier, C.A.: Successional state dynamics: a novel approach to modeling nonequilibrium foodweb dynamics. J. Theor. Biol. 262(4), 584–595 (2010)

    Article  MathSciNet  Google Scholar 

  • Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Application. Spinger, London (1993)

    Book  MATH  Google Scholar 

  • Lakmeche, A., Arino, O.: Bifurcation of nontrival periodic solution of impulsive differential equations arising chemotherapeutic treatment. Dyn. Cont. Dis. Impulsive Syst. 7, 265–287 (2000)

    MATH  Google Scholar 

  • Li, J.X., Zhao, A.M.: Stability analysis of a non-autonomous Lotka-Volterra competition model with seasonal succession. Appl. Math. Model. 40(2), 763–781 (2016)

    Article  MathSciNet  Google Scholar 

  • Litchman, E., Klausmeier, C.A.: Competition of phytoplankton under fluctuating light. AM Nat. 157, 170–187 (2001)

    Article  Google Scholar 

  • Liu, X.Z.: Impulsive stabilization and applications to population growth models. Rocky Mt. J. Math. 25(1), 381–395 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, X., Zhang, S.H.: A cell population model described by impulsive pdes-existence and numerical approximation. Comput. Math. Appl. 36(8), 1–11 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Mayzaud, P., Tirelli, V., Errhif, A., Labat, J.P., Razouls, S., Perissinotto, R.: Carbon and role of zooplankton grazing in the Indian sector of the Southern Ocean. Deep-Sea. Res. II(49), 3169–3187 (2002)

    Google Scholar 

  • Pearce, J., Ferrier, S.: An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol. Model 128, 127C147 (2000)

    Article  Google Scholar 

  • Smetacek, V., Scharek, R., Nothig, E.M.: Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: Kerry, K.R., Hempel, G. (eds.) Antarctic Ecosystems: Ecological Change and Conservation, pp. 103–114. Springer, Berlin (1990)

    Chapter  Google Scholar 

  • Steiner, C.E., Schwaderer, A.S., Huber, V., Klausmeier, C.A., Litchman, E.: Periodically forced food chain dynamics: model predictions and experimental validation. Ecology 90(11), 3099–3107 (2009)

    Article  Google Scholar 

  • Taylor, R.A., Sherratt, J.A., White, A.: Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model. J. Math. Biol. 67(6), 1741–1764 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25(5), 1413–1425 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Verity, P.G., Smetacek, V.: Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130, 277–293 (1996)

    Article  Google Scholar 

  • Wang, W.J., Li, Y.X.: Stabilization in an n-species chemotaxis system with a logistic source. J. Math. Anal. Appl. 432, 274–288 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, L.M., Liu, Z.J., Hui, J., Chen, L.S.: Impulsive diffusion in single species model. Chaos Soliton. Fract. 33(4), 1213–1219 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Weymouth, F.W., McMillin, H.C., Rich, W.H.: Latitude and relative growth in the razor clam, siliqua patual. J. Exp. Biol. 8, 228–249 (1931)

    Google Scholar 

  • Windson, C.P.: The Gompertz curve as a growth curve. PNAS 18(1), 73–83 (1932)

    Google Scholar 

  • Wright, S.: Book review. J. Am. Stat. Assoc. 21, 494 (1926)

    Google Scholar 

  • Yu, Y., Wang, W., Lu, Z.: Global stability of Gompertz model of three competing population. J. Math. Anal. Appl. 334, 333–348 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, L., Teng, Z.D.: The dynamical behavior of a predator-prey system with Gompertz growth function and impulsive dispersal of prey between two patches. Math. Meth. Appl. Sci. 39, 3623–3639 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, L., Teng, Z.D., Liu, Z.J.: Survival analysis for a periodic predator-prey model prey impulsively unilateral diffusion in two patches. Appl. Math. Model. 35(9), 4243–4256 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, L., Teng, Z.D., Donald, L., Ruan, S.G.: Single species models with logistic growth and dissymmetric impulse dispersal. Math. Biosci. 241(2), 188–197 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees very much for their valuable suggestions and careful reading and checking this paper. This work was supported by the National Natural Science Foundation of P.R. China (11361059, 11271312), the Natural Science Foundation of Xinjiang Province of China (2014721014) and the Scientific Research Programmes of Colleges in Xinjiang (XJEDU2013I03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, L. & Teng, Z. Single-species model under seasonal succession alternating between Gompertz and Logistic growth and impulsive perturbations. Int J Geomath 8, 241–260 (2017). https://doi.org/10.1007/s13137-017-0092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-017-0092-9

Keywords

Mathematics Subject Classification