Skip to main content
Log in

Petrographical and mineral chemistry evidence to delineate the source/sources of the Central Indian Ocean Basin pumices

  • Articles
  • Marine Geology
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

We present data pertaining to mineral assemblages and composition of the Central Indian Ocean Basin (CIOB) pumices. Eight groups of pumices were identified considering the presence of phenocrysts of plagioclase, clinopyroxene, orthopyroxene, hornblende and biotite together with the occurrence of quartz and glass. Pigeonite, fayalite and ulvospinelare reported for the first time from these pumices. In the eight groups, the modal percentage of the constituents are phenocrysts 3% to 19% (avg 9.6%), silicic glass 33% to 54% (avg 43%) and the rest is vesicles. Based on the above factors we have identified the possible sources of the CIOB pumices. The mineral compositions of plagioclase, pyroxenes, and biotite of the CIOB pumices were compared with those of Krakatau and Toba. Most of the plagioclase and pyroxene compositions resemble the Haranggoal Dacite Tuff of Toba and Krakatau. Considering the mineral assemblages and compositions, there are pumices which do not correlate to any of the above eruptions and are probably from yet unidentified source/sources. These sources could either be from nearby terrestrial volcanoes or intraplate seamounts present in the CIOB. In a global context, it is viable that petrological characteristics could be used as initial criteria to determine the source of pumices that occur at abyssal depths in the world ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Allègre C J, Provost A, Jaupart C. 1981. Oscillatory zoning: a pathological case of crystal growth. Nature, 294(5838): 223–228, doi: https://doi.org/10.1038/294223a0

    Article  Google Scholar 

  • Almeev R R, Ariskin A A. 1996. Mineral-melt equilibria in a hydrous basaltic system: computer modeling. Geochemistry International, 34(7): 563–573

    Google Scholar 

  • Amonkar A, Iyer S D, Babu E V S S K, et al. 2020. Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin. Journal of Earth System Science, 129(1): 175, doi: https://doi.org/10.1007/s12040-020-01429-6

    Article  Google Scholar 

  • Beard J S, Ragland P C, Rushmer T. 2004. Hydration crystallization reactions between anhydrous minerals and hydrous melt to yield amphibole and biotite in igneous rocks: Description and Implications. The Journal of Geology, 112(5): 617–621, doi: https://doi.org/10.1086/422670

    Article  Google Scholar 

  • Binard N, Hékinian R, Cheminée J L, et al. 1992. Styles of eruptive activity on intraplate volcanoes in the Society and Austral hot spot regions: bathymetry, petrology, and submersible observations. Journal of Geophysical Research: Solid Earth, 97(B10): 13999–14015, doi: https://doi.org/10.1029/92JB00692

    Article  Google Scholar 

  • Bitschene P R, Dehn J, Mehl K W, et al. 1992a. Explosive ocean island volcanism and seamount evolution in the Central Indian Ocean (Kerguelen Plateau). In: Duncan R A, Rea D K, Kidd R B, et al., eds. Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 70: 105–113, doi: https://doi.org/10.1029/GM070p0105

    Google Scholar 

  • Bitschene P R, Mehl K W, Schmincke H U. 1992b. Composition and origin of marine ash layers and epiclastic rocks from the Kerguelen Plateau, southern Indian Ocean (Legs 119 and 120). In: Wise S WJr, Schlich R, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 120: 135–149

    Google Scholar 

  • Bitschene P R, Schmincke H U. 1990. Fallout tephra layers: composition and significance. In: Heling D, Rothe P, Förstner U, et al., eds. Sediments and Environmental Geochemistry. Berlin, Heidelberg: Springer-Verlag, 48–82

    Chapter  Google Scholar 

  • Bryan S E, Cook A, Evans J P, et al. 2004. Pumice rafting and faunal dispersion during 2001–2002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga. Earth and Planetary Science Letters, 227(1–2): 135–154

    Article  Google Scholar 

  • Camus G, Gourgaud A, Vincent P M. 1987. Petrologic evolution of Krakatau (Indonesia): Implications for a future activity. Journal of Volcanology and Geothermal Research, 33(4): 299–316, doi: https://doi.org/10.1016/0377-0273(87)90020-5

    Article  Google Scholar 

  • Cashman K V, Fiske R S. 1991. Fallout of pyroclastic debris from submarine volcanic eruptions. Science, 253(5017): 275–280, doi: https://doi.org/10.1126/science.253.5017.275

    Article  Google Scholar 

  • Chen Zuxing, Zeng Zhigang, Wang Xiaoyuan, et al. 2020. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales. Lithos, 376–377: 105776, doi: https://doi.org/10.1016/j.lithos.2020.105776

    Article  Google Scholar 

  • Chesner C A. 1998. Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. Journal of Petrology, 39(3): 397–438, doi: https://doi.org/10.1093/petroj/39.3.397

    Article  Google Scholar 

  • Chesner C A, Rose W I. 1991. Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera complex, Sumatra, Indonesia. Bulletin of Volcanology, 53(5): 343–356, doi: https://doi.org/10.1007/BF00280226

    Article  Google Scholar 

  • Clynne M A. 1999. A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. Journal of Petrology, 40(1): 105–132, doi: https://doi.org/10.1093/petroj/40.1.105

    Article  Google Scholar 

  • Cox K G, Bell J D. 1972. A crystal fractionation model for the basaltic rocks of the New Georgia Group, British Solomon Islands. Contributions to Mineralogy and Petrology, 37(1): 1–13, doi: https://doi.org/10.1007/BF00377302

    Article  Google Scholar 

  • Das P, Iyer S D, Kodagali V N. 2007. Morphological characteristics and emplacement mechanism of the seamounts in the Central Indian Ocean Basin. Tectonophysics, 443(1–2): 1–18, doi: https://doi.org/10.1016/j.tecto.2007.08.002

    Article  Google Scholar 

  • Fisk M R. 1984. Depths and temperatures of mid-ocean-ridge magma chambers and the composition of their source magmas. Geological Society, London, Special Publications, 13(1): 17–23, doi: https://doi.org/10.1144/GSL.SP.1984.013.01.02

    Article  Google Scholar 

  • Fiske R S, Cashman K V, Shibata A, et al. 1998. Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953. Bulletin of Volcanology, 59(4): 262–275, doi: https://doi.org/10.1007/s004450050190

    Article  Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou J L, et al. 1991. Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology, 19(4): 303–306, doi: https://doi.org/10.1130/0091-7613(1991)019<0303:HAITLB>2.3.CO;2

    Article  Google Scholar 

  • Frey F A, Coffin M F, Wallace P J, et al. 2000. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth and Planetary Science Letters, 176(1): 73–89, doi: https://doi.org/10.1016/S0012-821X(99)00315-5

    Article  Google Scholar 

  • Frick C, Kent L E. 1984. Drift pumice in the Indian and South Atlantic oceans. South African Journal of Geology, 87(1): 19–33

    Google Scholar 

  • Ginibre C, Wörner G, Kronz A. 2007. Crystal zoning as an archive for magma evolution. Elements, 3(4): 261–266, doi: https://doi.org/10.2113/gselements.3.4.261

    Article  Google Scholar 

  • Guo Kun, Zhai Shikui, Wang Xiaoyuan, et al. 2018. The dynamics of the southern Okinawa Trough magmatic system: New insights from the microanalysis of the An contents, trace element concentrations and Sr isotopic compositions of plagioclase hosted in basalts and silicic rocks. Chemical Geology, 497: 146–161, doi: https://doi.org/10.1016/j.chemgeo.2018.09.002

    Article  Google Scholar 

  • Halbach P, Koschinsky A, Seifert R, et al. 1989. Diffuse hydrothermal fluid activity, biological communities, and mineral formation in the North Fiji Basin (SW Pacific): Preliminary results of the R/V Sonne Cruise SO-134. Interridge News, 8: 38–44

    Google Scholar 

  • Head J WIII, Wilson L. 2003. Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. Journal of Volcanology and Geothermal Research, 121(3–4): 155–193, doi: https://doi.org/10.1016/S0377-0273(02)00425-0

    Article  Google Scholar 

  • Hédervari P. 1982. A possible submarine volcano near the central part of Ninety-East Ridge, Indian Ocean. Journal of Volcanology and Geothermal Research, 13(3–4): 199–211, doi: https://doi.org/10.1016/0377-0273(82)90050-6

    Article  Google Scholar 

  • Hibbard M J. 1981. The magma mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology, 76(2): 158–170, doi: https://doi.org/10.1007/BF00371956

    Article  Google Scholar 

  • Iyer S D. 1996. A study of the volcanics of the Central Indian Ocean Basin and their relationship to the ferromanganese deposits [dissertation]. Kolkata: Jadavpur University

    Google Scholar 

  • Iyer S D, Amonkar A A, Das P. 2018. Genesis of Central Indian Ocean basin seamounts: morphological, petrological, and geochemical evidence. International Journal of Earth Sciences, 107(7): 2517–2538, doi: https://doi.org/10.1007/s00531-018-1612-z

    Article  Google Scholar 

  • Iyer S D, Banerjee R. 1998. Importance of plagioclase morphology and composition in magmagenesis of the Carlsberg Ridge basalts. Journal of Indian Geophysical Union, 1(2): 63–72

    Google Scholar 

  • Iyer S D, Karisiddaiah S M. 1988. Morphology and petrography of pumice from the Central Indian Ocean Basin. Indian Journal of Marine Science, 17: 333–334

    Google Scholar 

  • Iyer S D, Prasad M S, Gupta S M, et al. 1997. Evidence for recent hydrothermal activity in the Central Indian Basin. Deep-Sea Research Part I: Oceanographic Research Papers, 44(7): 1167–1184, doi: https://doi.org/10.1016/S0967-0637(97)00001-0

    Article  Google Scholar 

  • Iyer S D, Sudhakar M. 1993. Coexistence of pumice and manganese nodule fields—evidence for submarine silicic volcanism in the Central Indian Basin. Deep-Sea Research Part I: Oceanographic Research Papers, 40(5): 1123–1129, doi: https://doi.org/10.1016/0967-0637(93)90092-H

    Article  Google Scholar 

  • Iyer S D, Sudhakar M. 1995. Evidences for a volcanic province in the Central Indian Basin. Journal of Geological Society of India, 46: 353–358

    Google Scholar 

  • Kalangutkar N G. 2012. Petrology and petrogenesis of pumice from Central Indian Ocean Basin [dissertation]. Goa: Goa University

    Google Scholar 

  • Kalangutkar N G, Iyer S D. 2012. Submarine silicic volcanism: Processes and products. Geo-Spectrum Interface, 6(1): 30–39

    Google Scholar 

  • Kalangutkar N G, Iyer S D, Ilangovan D. 2011. Physical properties, morphology and petrological characteristics of pumices from the Central Indian Ocean Basin. Acta Geologica Sinica, 85(4): 826–839, doi: https://doi.org/10.1111/j.1755-6724.2011.00488.x

    Article  Google Scholar 

  • Kalangutkar N G, Iyer S D, Mascarenhas-Pereira M B L, et al. 2015. Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin. Geo-Marine Letters, 35(3): 221–235, doi: https://doi.org/10.1007/s00367-015-0402-x

    Article  Google Scholar 

  • Kano K. 2003. Subaqueous pumice eruptions and their products: A review. In: White J D L, Smellie J L, Clague D A, eds. Explosive Subaqueous Volcanism. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 140: 213–229

    Chapter  Google Scholar 

  • Kato Y. 1987. Woody pumice generated with submarine eruption. Journal of Geological Society of Japan, 93(1): 11–20

    Google Scholar 

  • Kidd R B, Ramsay A T S, Sykes T J S, et al. 1992. An Indian Ocean framework for paleoceanographic synthesis based on DSDP and ODP results. In: Duncan R A, Rea D K, Kidd R B, et al., eds. Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophysical Monograph Series. Washington, DC: American Geophysical Union, 70: 403–422, doi: https://doi.org/10.1029/GM070p0403

    Google Scholar 

  • Kimura S, Muan A. 1971. Phase relations in the system CaO-iron ox-ide-TiO2 in air. American Mineralogist: Journal of Earth and Planetary Materials, 56(7–8), 1332–1346

    Google Scholar 

  • Kodagali V N. 1998. A pair of seamount chains in the Central Indian Basin, identified from multibeam mapping. Marine Geodesy, 21(2): 147–158, doi: https://doi.org/10.1080/01490419809388130

    Article  Google Scholar 

  • Kokelaar P, Busby C. 1992. Subaqueous explosive eruption and welding of pyroclastic deposits. Science, 257(5067): 196–201, doi: https://doi.org/10.1126/science.257.5067.196

    Article  Google Scholar 

  • Lonsdale P, Hawkins J. 1985. Silicic volcanism at an off-axis geo-thermal field in the Mariana Trough back-arc basin. Geological Society of American Bulletin, 96(7): 940–951, doi: https://doi.org/10.1130/0016-7606(1985)96<940:SVAAOG>2.0.CO;2

    Article  Google Scholar 

  • Martín-Barajas A, Lallier-Verges E. 1993. Ash layers and pumice in the Central Indian Basin: relationship to the formation of manganese nodules. Marine Geology, 115(3–4): 307–329, doi: https://doi.org/10.1016/0025-3227(93)90058-4

    Article  Google Scholar 

  • Mascarenhas-Pereira M B L, Nath B N, Borole D V, et al. 2006. Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin. Marine Geology, 229(1–2): 79–90, doi: https://doi.org/10.1016/j.margeo.2006.02.002

    Article  Google Scholar 

  • Mudholkar A, Fujii T. 1995. Fresh pumice from the Central Indian Basin: A Krakatau 1883 signature. Marine Geology, 125(1–2): 143–151, doi: https://doi.org/10.1016/0025-3227(95)00027-V

    Article  Google Scholar 

  • Mueller W, White J D L. 1992. Felsic fire-fountaining beneath Archean seas: Pyroclastic deposits of the 2730 Ma Hunter Mine Group, Quebec, Canada. Journal of Volcanology and Geo-thermal Research, 54(1–2): 117–134, doi: https://doi.org/10.1016/0377-0273(92)90118-W

    Article  Google Scholar 

  • Mukherjee A D, Iyer S D. 1999. Synthesis of morphotectonics and volcanics of the Central Indian Ocean Basin. Current Science, 76(3): 296–304

    Google Scholar 

  • Mukhopadhyay R, Ghosh A K, Iyer S D. 2018. The Indian Ocean Nodule Field: Geology and Resource Potential. 2nd ed. Amsterdam: Elsevier

    Google Scholar 

  • Müller A, Breiter K, Seltmann R, et al. 2005. Quartz and feldspar zoning in the eastern Erzgebirge Volcano-Plutonic Complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos, 80(1–4): 201–227, doi: https://doi.org/10.1016/j.lithos.2004.05.011

    Article  Google Scholar 

  • Neumann von Padang M. 1967. Catalogue of active volcanoes of the world part xxi Atlantic Ocean. Roma: International Association of Volcanology, 128

    Google Scholar 

  • Oba N, Tomita K, Yamamoto M, et al. 1983. Geochemical study of volcanic products, in particular to pumice flow, of the Krakatau Group, Indonesia. Reports of the Faculty of Science, Kagoshima University (Earth Sciences and Biology), (16): 21–41

  • Pal T, Mitra S K, Sengupta S, et al. 2007. Dacite-andesites of Narcondam volcano in the Andaman Sea—an imprint of magma mixing in the inner arc of the Andaman-Java subduction system. Journal of Volcanology and Geothermal Research, 168(1–4): 93–113, doi: https://doi.org/10.1016/j.jvolgeores.2007.08.005

    Article  Google Scholar 

  • Pattan J N, Mudholkar A V, Jai Sankar S, et al. 2008. Drift pumice in the Central Indian Ocean Basin: Geochemical evidence. Deep-Sea Research Part I: Oceanographic Research Papers, 55(3): 369–378, doi: https://doi.org/10.1016/j.dsr.2007.12.005

    Article  Google Scholar 

  • Pattan J N, Parthiban G, Moraes C, et al. 2016. A note on chemical composition and origin of ferromanganese oxide coated and uncoated pumice samples from Central Indian Ocean Basin. Journal of the Geological Society of India, 87(1): 62–68, doi: https://doi.org/10.1007/s12594-016-0374-0

    Article  Google Scholar 

  • Pattan J N, Pearce N J G, Parthiban G, et al. 2013. The origin of ferromanganese oxide coated pumice from the Central Indian Ocean Basin. Quaternary International, 313–314: 230–239, doi: https://doi.org/10.1016/j.quaint.2013.07.128

    Article  Google Scholar 

  • Poulsen H F, Neuefeind J, Neumann H B, et al. 1995. Amorphous silica studied by high energy X-ray diffraction. Journal of Non-Crystalline Solids, 188(1–2): 63–74, doi: https://doi.org/10.1016/0022-3093(95)00095-X

    Article  Google Scholar 

  • Ray J S, Pande K, Awasthi N. 2013. A minimum age for the active Barren Island volcano, Andaman Sea. Current Science, 104(7): 934–939

    Google Scholar 

  • Ray D, Rajan S, Ravindra R, et al. 2011. Microtextural and mineral chemical analyses of andesite-dacite from Barren and Narcon-dam islands: Evidences for magma mixing and petrological implications. Journal of Earth System Science, 120(1): 145–155, doi: https://doi.org/10.1007/s12040-011-0006-4

    Article  Google Scholar 

  • Risso C, Scasso R A, Aparicio A. 2002. Presence of large pumice blocks on Tierra del Fuego and South Shetland Islands shorelines, from 1962 South Sandwich Islands eruption. Marine Geology, 186(3–4): 413–422, doi: https://doi.org/10.1016/S0025-3227(02)00190-1

    Article  Google Scholar 

  • Schott F, McCreary J P. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51: 1–123, doi: https://doi.org/10.1016/S0079-6611(01)00083-0

    Article  Google Scholar 

  • Shinjo R, Kato Y. 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3–4): 117–137, doi: https://doi.org/10.1016/S0024-4937(00)00034-7

    Article  Google Scholar 

  • Sigurdsson H, Sparks R S J, Carey S N, et al. 1980. Volcanogenic sedimentation in the Lesser Antilles Arc. The Journal of Geology, 88(5): 523–540, doi: https://doi.org/10.1086/628542

    Article  Google Scholar 

  • Sukumaran N P, Banerjee R, Borole D V, et al. 1998. Some aspects of volcanic ash layers in the Central Indian Basin. Geo-Marine Letters, 18(3): 203–208, doi: https://doi.org/10.1007/s003670050069

    Article  Google Scholar 

  • Svalnov V N. 1981. The effect of island volcanism in the Indian Ocean. Oceanology, 21: 606–612

    Google Scholar 

  • Vance J A. 1965. Zoning in igneous plagioclase: patchy zoning. The Journal of Geology, 73(4): 636–651, doi: https://doi.org/10.1086/627099

    Article  Google Scholar 

  • Whitham A G, Sparks R S J. 1986. Pumice. Bulletin of Volcanology, 48(4): 209–223, doi: https://doi.org/10.1007/bf01087675

    Article  Google Scholar 

  • Wilson C J N, Blake S, Charlier B L A, et al. 2006. The 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand: Development, characteristics and evacuation of a large rhyolitic magma body. Journal of Petrology, 47(1): 35–69, doi: https://doi.org/10.1093/petrology/egi066

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Director of Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula, Goa and Vice-Chancellor, Goa University for providing facilities and encouragements. Niyati G. Kalangutkar was supported by CSIR-SRF during her doctoral work at the CSIR-NIO. We acknowledge Vijay Khedekar and Areef Sardar, both from CSIRNIO, for help during the SEM-EDS and EPMA analyses. Part of the research was supported under Endeavour Fellowship awarded to Niyati G. Kalangutkar by Government of Australia and the work was conducted at Queensland University of Technology Laboratory, Brisbane, Queensland. Niyati G. Kalangutkar is grateful to Scott Bryan who was the research supervisor during the Fellowship and extended instrument facilities. Thanks to the reviewers and EIC for comments which helped to review the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyati G. Kalangutkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalangutkar, N.G., Iyer, S.D. Petrographical and mineral chemistry evidence to delineate the source/sources of the Central Indian Ocean Basin pumices. Acta Oceanol. Sin. 42, 102–116 (2023). https://doi.org/10.1007/s13131-022-2062-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-022-2062-9

Key words

Navigation