Skip to main content
Log in

Three dimensional simulation of internal wave attractors in the Luzon Strait

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Internal waves propagate along wave beams that are inclined with respect to the horizontal plane. It is conjectured that the internal waves generated in the Luzon Strait may be confined between the double ridges in the strait and concentrate to a closed trajectory, the so-called internal wave attractor, due to the reflection of wave beams from the lateral boundaries, sea surface and bottom. This work carried out two experiments using a three dimensional non-hydrostatic general circulation model, MITgcm, to investigate the possibility that the ridges in the Luzon Strait allows for internal wave attractors. Baroclinic current in both of the experiments demonstrate the forming of ring-like patterns in some section around 20° and 21°N, indicating that the development of the internal wave attractors are allowed in the Luzon Strait. The different resolutions and initial conditions in the two experiments also reveal that the internal-wave-attractor phenomenon is robust in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NAOO Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA

    Google Scholar 

  • Bajars J, Frank J, Maas L R M. 2013. On the appearance of internal wave attractors due to an initial or parametrically excited disturbance. J Fluid Mech, 714: 283–311

    Article  Google Scholar 

  • Cai Shuqun, Long Xiaomin, Gan Zijun. 2002. A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait. Oceanologica Acta, 25(2): 51–60

    Article  Google Scholar 

  • Cai Shuqun, Xie Jieshuo, He Jianling. 2012. An overview of internal solitary waves in the South China Sea. Surveys in Geophysics, 33(5): 927–943

    Article  Google Scholar 

  • Cai Shuqun, Xie Jieshuo, Xu Jiexin, et al. 2014. Monthly variation of some parameters about internal solitary waves in the South China Sea. Deep-Sea Researth Part I: Oceanographic Research Papers, 84: 73–85

    Article  Google Scholar 

  • Dintrans B, Rieutord M, Valdettaro L. 1999. Gravito-inertial waves in a rotating stratified sphere or spherical shell. Journal of Fluid Mechanics, 398: 271–297

    Article  Google Scholar 

  • Duda T F, Lynch J F, Irish J D, et al. 2004. Internal tide and nonlinear internal wave behavior at the continentalslope in the Northern South China Sea. IEEE Journal of Oceanic Engineering, 29(4): 1105–1130

    Article  Google Scholar 

  • Echeverri P, Yokossi T, Balmforth N J, et al. 2011. Tidally generated internal-wave attractors between double ridges. Journal of Fluid Mechanism, 669: 354–374

    Article  Google Scholar 

  • Edbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204

    Article  Google Scholar 

  • Fang Xinhua, Du Tao. 2005. Fundamental of Ocean Internal Waves and Internal Waves in China Seas (in Chinese). Qingdao: Press of Ocean University of China

    Google Scholar 

  • Gan Xilin, Huang Weigen, Yang Jingsong, et al. 2007. The study of spatial and temporal distribution characteristics of internal waves in the South China Sea from multi-satellite data. Remote Sensing Technology and Application (in Chinese), 22(2): 242–245

    Google Scholar 

  • Gmez-Giraldo A S, Imberger J, Antenucci J P. 2006. Spatial structure of the dominant basin-scale internal waves in Lake Kinneret. Limnology and Oceanography, 51(1): 229–246

    Article  Google Scholar 

  • Grisouard N, Staquet C, Pairaud I. 2008. Numerical simulation of a two-dimensional internal wave attractor. Journal of Fluid Mechanics, 614: 1–14

    Article  Google Scholar 

  • Hazewinkel J, Breevoort P V, Dalziel S B, et al. 2008. Observations on the wavenumber spectrum and evolution of an internal wave attractor. Journal of Fluid Mechanics, 598: 373–382

    Article  Google Scholar 

  • Hazewinkel J, Grisouard N, Dalziel S B. 2011. Comparison of laboratory and numerically observed scalar fields of an internal wave attractor. European Journal of Mechanics-B/Fluids, 30(1): 51–56

    Article  Google Scholar 

  • Huang Xiaodong, Zhao Wei, Tian Jiwei, et al. 2014. Mooring observations of internal solitary waves in the deep basin west of Luzon Strait. Acta Oceanologica Sinica, 33(3): 82–89

    Article  Google Scholar 

  • Lam F-P A, Maas L R M. 2008. Internal wave focusing revisited; a reanalysis and new theoretical links. Fluid Dynamics Research, 40(2): 95–122

    Article  Google Scholar 

  • Li Huan, Song Dan, Chen Xueen, et al. 2011. Numerical study of M2 internal tide generation and propagation in the Luzon Strait. Acta Oceanologica Sinica, 30(5): 23–32

    Article  Google Scholar 

  • Liao Guanghong, Yuan Yaochu, Arata K, et al. 2011. Analysis of internal tidal characteristics in the layer above 450m from acoustic Doppler current profiler observations in the Luzon Strait. Science China Earth Sciences, 54(7): 1078–1094

    Article  Google Scholar 

  • Liu A K, Hsu M K. 2004. Internal wave study in the South China Sea using Synthetic Aperture Radar (SAR). Int J Remote Sensing, 25(7-8): 1261–1274

    Article  Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I, et al. 2013. World Ocean Atla. 2013. Volume 1: Temperature. In: Levitus S, ed, Mishonov A, technical ed. NOAA Atlas NESDIS, 73, 40

    Google Scholar 

  • Lorenz N E. 1963. Deterministic nonperiodic flows. Journal of Atmospheric Science, 20(2): 130–141

    Article  Google Scholar 

  • Maas L R M. 2001. Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids. Journal of Fluid Mechanics, 437: 13–28

    Article  Google Scholar 

  • Maas L R M. 2005. Wave attractors: linear yet nonlinear. International Journal of Bifurcation and Chaos, 15(9): 2757–2782

    Article  Google Scholar 

  • Maas L R M. 2009. Exact analytic self-similar solution of a wave attractor field. Physica D: Nonlinear Phenomena, 238(5): 502–505

    Article  Google Scholar 

  • Maas L R M, Benielli D, Sommeria J, et al. 1997. Observation of an internal wave attractor in a confined stable stratified fluid. Nature, 388(6642): 557–561

    Article  Google Scholar 

  • Maas L R M, Lam F-P A. 1995. Geometric focusing of internal waves. Journal of Fluid Mechanics, 300: 1–41

    Article  Google Scholar 

  • MacKinnon J. 2013. Oceanography: Mountain waves in the deep ocean. Nature, 501(7467): 321–322

    Article  Google Scholar 

  • Manders A M M, Duistermaat J J, Maas L R M. 2003. Wave attractors in a smooth convex enclosed geometry. Physica D: Nonlinear Phenomena, 186(3–4):109–132

    Article  Google Scholar 

  • Manders A M M, Maas L R M. 2003. Observations of inertial waves in a rectangular basin with one sloping boundary. Journal of Fluid Mechanics, 493: 59–88

    Article  Google Scholar 

  • Nikurashin M, Ferrari R. 2013. Overturning circulation driven by breaking internal waves in the deep ocean. Geophysical Research Letters, 40(12): 3133–3137

    Article  Google Scholar 

  • Ogilvie G I. 2005. Wave attractors and the asymptotic dissipation rate of tidal disturbances. Journal of Fluid Mechanics, 543: 19–44

    Article  Google Scholar 

  • Pinkel R, Muijsman M, Klymak J M. 2012. Breaking topographic lee waves in a tidal channel in Luzon Strait. Oceanography, 25(2): 160–165

    Article  Google Scholar 

  • Rieutord M, Georgeot B, Valdettaro L. 2001. Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. Journal of Fluid Mechanics, 435(1): 103–144

    Google Scholar 

  • Scolan H, Ermanyuk E, Dauxois T. 2013. Nonlinear fate of internal wave attractors. Phys Rev Lett, 110(23): 234501

    Article  Google Scholar 

  • Staquet C, Sommeria J. 2002. Internal Gravity Waves: from instabilities to turbulence. Annual Review of Fluid Mechanics, 34(1): 559–594

    Article  Google Scholar 

  • Swart A, Manders A, Harlander U, et al. 2010. Experimental observation of strong mixing due to internal wave focusing over sloping terrain. Dynamics of Atmospheres and Oceans, 50(1): 16–34

    Article  Google Scholar 

  • Tang W, Peacock T. 2010. Lagrangian coherent structures and internal wave attractors. Chaos, 20: 017508

    Article  Google Scholar 

  • Wang Gang, Qiao Fangli. 2010. Numerical simulation on internal wave attractors. Haiyang Xuebao (in Chinese), 32(6): 25–34

    Google Scholar 

  • Yang Yingjang, Tang T Y, Chang M H, et al. 2004. Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE Journal of Oceanic Engineering, 29(4): 1182–1199

    Article  Google Scholar 

  • Zhao Zhongxiang. 2014. Internal tide radiation from the Luzon Strait. Journal of Geophysical Research: Oceans, 119(8): 5434–5448

    Google Scholar 

  • Zhao Zhongxiang, Klemas V, Zheng Quanan, et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letters, 31: L06302

    Google Scholar 

  • Zheng Quanan, Susanto R D, Ho C, et al. 2007. Statistical and dynamical analyses of generation mechanisms of solitary internal waves in the northern South China Sea. Journal of Geophysical Research, 112: C03021

    Google Scholar 

  • Zwentg M M, Reagan J R, Antonov J I, et al. 2013. World Ocean Atla. 2013. Volume 2: Salinity. Levitus S, ed, Mishonov A, technical ed; NOAA Atlas NESDIS, 74, 39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

Foundation item: The National Basic Research Program (973 Program) of China under contract No. 2011CB403502; the Major National Scientific Research Projects of China under contract No. 2012CB957803; the National Natural Science Foundation of China under contract No 41476024; the National Natural Science Foundation of China-Shandong Joint Fund of Marine Science Research Centers of China under contract No. U1406404; the Foundation for Outstanding Young and Middle-aged Scientists in Shandong Province of China under contract No. BS2011HZ019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zheng, Q., Lin, M. et al. Three dimensional simulation of internal wave attractors in the Luzon Strait. Acta Oceanol. Sin. 34, 14–21 (2015). https://doi.org/10.1007/s13131-015-0744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-015-0744-2

Keywords

Navigation