Skip to main content
Log in

Symbiodiniaceae diversity and characterization of palytoxin in various zoantharians (Anthozoa, Hexacorallia)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Anemone-like animals belonging to the order Zoantharia are common anthozoans widely distributed from shallow to deep tropical and subtropical waters. Some species are well-known because of their high toxicity due to the presence of palytoxin (PLTX) in their tissues. PLTX is a large polyhydroxylated compound and one of the most potent toxins known. Currently, the PLTX biosynthetic pathway in zoantharians and the role of the host or the putative symbiotic organism(s) involved in this pathway are entirely unknown. To better understand the presence of PLTX in some Zoantharia, twenty-nine zoantharian colonies were analysed in this study. All zoantharian samples and their endosymbiotic dinoflagellates (Symbiodiniaceae = Zooxanthellae) were identified using DNA barcoding and phylogenetic reconstructions. Quantification of PLTX and its analogues showed that the yields contained in Palythoa heliodiscus, Palythoa aff. clavata and one potentially undescribed species of Palythoa are among the highest ever found (up to > 2 mg/g of wet zoantharian). Mass spectrometry imaging was used for the first time on Palythoa samples and revealed that in situ distribution of PLTX is mainly located in ectodermal tissues such as the epidermis of the body wall and the pharynx. Moreover, high levels of PLTX have been detected in histological regions where few or no Symbiodiniaceae cells could be observed. Finally, issues such as host‐specificity and environmental variables driving biogeographical patterns of hosted Symbiodiniaceae in zoantharian lineages were discussed in light of our phylogenetic results as well as the patterns of PLTX distribution. It was concluded that (1) the variability of Symbiodiniaceae diversity may be related to ecological divergence in Zoantharia, (2) all Palythoa species hosted Cladocopium Symbiodiniaceae (formerly clade C), (3) the sole presence of Cladocopium is not sufficient to explain the presence of high concentrations of PLTX and/or its analogues, and (4) the ability to produce high levels of PLTX and/or its analogues highlighted in some Palythoa species could be a plesiomorphic character inherited from their last common ancestor and subsequently lost in several lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All sequences generated in this study have been deposited and accepted in GenBank (MW077616 to MW077644, MW219226 to MW219250, MW717422 to MW717450). The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aguilar, C., & Reimer, J. D. (2010). Molecular phylogenetic hypotheses of Zoanthus species (Anthozoa: Hexacorallia) using RNA secondary structure of the internal transcribed spacer 2 (ITS2). Marine Biodiversity, 40, 195–204. https://doi.org/10.1007/s12526-010-0043-2

    Article  Google Scholar 

  • Aratake, S., Taira, Y., Fujii, T., Roy, M. C., Reimer, J. D., Yamazaki, T., & Jenke-Kodama, H. (2016). Distribution of palytoxin in coral reef organisms living in close proximity to an aggregation of Palythoa tuberculosa. Toxicon, 111, 86–90. https://doi.org/10.1016/j.toxicon.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  • Barbany, M., Rossell, M., & Salvador, A. (2019). Toxicidad corneal por exposición a palitoxina [Toxic corneal reaction due to exposure to palytoxin]. Archivos de la Sociedad Española de Oftalmología, 94(4), 184–187. https://doi.org/10.1016/j.oftal.2018.10.011

  • Béress, L., Zwick, J., Kolkenbrock, H. J., Kaul, P. N., & Wassermann, O. (1983). A method for the isolation of the caribbean palytoxin (C-PTX) from the coelenterate (zoanthid) Palythoa caribaeorum. Toxicon, 21(2), 285–290. https://doi.org/10.1016/0041-0101(83)90013-2

    Article  PubMed  Google Scholar 

  • Burnett, W. J., Benzie, J. A. H., Beardmore, J. A., & Ryland, J. S. (1997). Zoanthids (Anthozoa, Hexacorallia) from the Great Barrier Reef and Torres Strait, Australia: Systematics, evolution and a key to species. Coral Reefs, 16, 55–68. https://doi.org/10.1007/s003380050060

    Article  Google Scholar 

  • Burnett, W. J. (2002). Longitudinal variation in algal symbionts (zooxanthellae) from the Indian Ocean zoanthid Palythoa caesia. Marine Ecology Progress Series, 234, 105–109. https://doi.org/10.3354/meps234105

  • Chang, E., Deeds, J., & Spaeth, K. (2020). A case of long-term neurological and respiratory sequelae of inhalational exposure to palytoxin. Toxicon, 186, 1–3. https://doi.org/10.1016/j.toxicon.2020.07.018

    Article  CAS  PubMed  Google Scholar 

  • Ciminiello, P., Dell’Aversano, C., Fattorusso, E., Forino, M., Tartaglione, L., Grillo, C., & Melchiorre, N. (2008). Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. Journal of the American Society for Mass Spectrometry, 19(1), 111–120. https://doi.org/10.1016/j.jasms.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  • Ciminiello, P., Dell’aversano, C., Dello Iacovo, E., Fattorusso, E., Forino, M., Grauso, L., Tartaglione, L., Florio, C., Lorenzon, P., De Bortoli, M., Tubaro, A., Poli, M., & Bignami, G. (2009). Stereostructure and biological activity of 42-hydroxy-palytoxin: A new palytoxin analogue from Hawaiian Palythoa subspecies. Chemical Research in Toxicology, 22(11), 1851–1859. https://doi.org/10.1021/tx900259v

  • Costa, D. L., Gomes, P. B., Santos, A. M., Valença, N. S., Vieira, N. A., & Pérez, C. D. (2011). Morphological plasticity in the reef zoanthid Palythoa caribaeorum as an adaptive strategy. Annales Zoologici Fennici, 48(6), 349–358.

    Article  Google Scholar 

  • Deeds, J. R., Handy, S. M., White, K. D., & Reimer, J. D. (2011). Palytoxin found in Palythoa sp. zoanthids (Anthozoa, Hexacorallia) sold in the home aquarium trade. PloS One 6(4), e18235. https://doi.org/10.1371/journal.pone.0018235

  • Del Favero, G., Sosa, S., Pelin, M., D’Orlando, E., Florio, C., Lorenzon, P., Poli, M., & Tubaro, A. (2012). Sanitary problems related to the presence of Ostreopsis spp. in the Mediterranean Sea: A multidisciplinary scientific approach. Annali dell'Istituto Superiore di Sanità, 48(4), 407–414. https://doi.org/10.4415/ANN_12_04_08

  • Drainville-Higgins, K. E. (2004). Isolation of marine metabolites from Symbiodinium species of dinoflagellates. Doctoral dissertation, The University of Rhode Island.

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq, A. V., Gibbons, A. G., Council, M. D., Harocopos, G. J., Holland, S., Judelson, J., Shoss, B. L., Schmidt, E. J., Md Noh, U. K., D’Angelo, A., Chundury, R. V., Judelson, R., Perez, V. L., & Huang, A. J. W. (2017). Corneal toxicity associated with aquarium coral palytoxin. American Journal of Ophthalmology, 174, 119–125. https://doi.org/10.1016/j.ajo.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  • Finney, J. C., Pettay, D. T., Sampayo, E. M., Warner, M. E., Oxenford, H. A., & LaJeunesse, T. C. (2010). The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microbial Ecology, 60(1), 250–263. https://doi.org/10.1007/s00248-010-9681-y

    Article  PubMed  Google Scholar 

  • Fontenele Rabelo, E., Leal Rocha, L., Barguil Colares, G., & Araujo Bomfim, T. (2014). Symbiodinium diversity associated with zoanthids (Cnidaria: Hexacorallia) in Northeastern Brazil. Symbiosis, 64, 105–113. https://doi.org/10.1007/s13199-014-0308-9

    Article  Google Scholar 

  • Fraga, M., Vilariño, N., Louzao, M. C., Molina, L., López, Y., Poli, M., & Botana, L. M. (2017). First identification of palytoxin-like molecules in the Atlantic coral species Palythoa canariensis. Analytical Chemistry, 89(14), 7438–7446. https://doi.org/10.1021/acs.analchem.7b01003

    Article  CAS  PubMed  Google Scholar 

  • Frolova, G. M., Kuznetsova, T. A., Mikhailov, V. V., & Elyakov, G. B. (2000). An enzyme linked immunosorbent assay for detecting palytoxin-producing bacteria. Russian Journal of Bioorganic Chemistry, 26(4), 285–289. https://doi.org/10.1007/BF02759168

    Article  CAS  Google Scholar 

  • Gaudchau, A., Pfeiffer, N., & Gericke, A. (2019). Verätzung durch Krustenanemone [Chemical burns caused by crust anemone]. Der Ophthalmologe, 116, 376–379. https://doi.org/10.1007/s00347-018-0742-9

    Article  CAS  PubMed  Google Scholar 

  • Gierz, S. L., Forêt, S., & Leggat, W. (2017). Transcriptomic analysis of thermally stressed Symbiodinium reveals differential expression of stress and metabolism genes. Frontiers in Plant Science, 8, 271. https://doi.org/10.3389/fpls.2017.00271

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleibs, S., Mebs, D., & Werding, B. (1995). Studies on the origin and distribution of palytoxin in a Caribbean coral reef. Toxicon, 33(11), 1531–1537. https://doi.org/10.1016/0041-0101(95)00079-2

    Article  CAS  PubMed  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hall, C., Levy, D., & Sattler, S. (2015). A case of palytoxin poisoning in a home aquarium enthusiast and his family. Case Reports in Emergency Medicine, 2015, 1–3. https://doi.org/10.1155/2015/621815

    Article  Google Scholar 

  • Hamade, A. K., Deglin, S. E., McLaughlin, J. B., Deeds, J. R., Handy, S. M., & Knolhoff, A. M. (2015). Suspected palytoxin inhalation exposures associated with zoanthid corals in aquarium shops and homes—Alaska, 2012–2014. MMWR. Morbidity and Mortality Weekly Report, 64(31), 852.

    Article  Google Scholar 

  • Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174. https://doi.org/10.1007/BF02101694

    Article  CAS  PubMed  Google Scholar 

  • Hirata, Y., Uemura, D., Ueda, K., & Takano, S. (1979). Several compounds from Palythoa tuberculosa (Coelenterata). Pure and Applied Chemistry, 51(9), 1875–1883. https://doi.org/10.1351/pac197951091875

    Article  CAS  Google Scholar 

  • Holcombe, T. L., & Moore, W. S. (1977). Paleocurrents in the eastern Caribbean: Geologic evidence and implications. Marine Geology, 23(1–2), 35–56. https://doi.org/10.1016/0025-3227(77)90080-9

    Article  Google Scholar 

  • Hume, B. C. C., Smith, E. G., Ziegler, M., Warrington, H. J. M., Burt, J. A., LaJeunesse, T. C., Wiedenmann, J., & Voolstra, C. R. (2019). SymPortal: A novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Molecular Ecology Resources, 19(4), 1063–1080.

    Article  CAS  Google Scholar 

  • Jalink, M. B., & van Luijk, C. M. (2019). Wegsmeltende hoornvliezen na de verhuizing van een zeeaquarium [Corneal melting after moving a tropical aquarium]. Nederlands Tijdschrift Voor Geneeskunde, 163.

  • Kamezaki, M., Higa, M., Hirose, M., Suda, S., & Reimer, J. D. (2013). Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan. Marine Biodiversity, 43, 61–70. https://doi.org/10.1007/s12526-012-0119-2

    Article  Google Scholar 

  • Kelmanson, I. V., & Matz, M. V. (2003). Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida). Molecular Biology and Evolution, 20(7), 1125–1133. https://doi.org/10.1093/molbev/msg130

    Article  CAS  PubMed  Google Scholar 

  • Kerbrat, A. S., Amzil, Z., Pawlowiez, R., Golubic, S., Sibat, M., Darius, H. T., Chinain, M., & Laurent, D. (2011). First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Marine Drugs, 9(4), 543–560. https://doi.org/10.3390/md9040543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  • Kimura, S., & Hashimoto, Y. (1973). Purification of the toxin in a zoanthid Palythoa tuberculosa. Publications of the Seto Marine Biological Laboratory, 20, 713–718.

    Article  Google Scholar 

  • Koupaei, A. N., Dehghani, H., Mostafavi, P. G., & Mashini, A. G. (2016). Phylogeny of Symbiodinium populations in zoantharians of the northern Persian Gulf. Marine Pollution Bulletin, 105(2), 553–557. https://doi.org/10.1016/j.marpolbul.2016.02.058

    Article  CAS  Google Scholar 

  • LaJeunesse, T. C., Smith, R. T., Finney, J., & Oxenford, H. (2009). Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proceedings of the Royal Society B: Biological Sciences, 276(1676), 4139–4148. https://doi.org/10.1098/rspb.2009.1405

    Article  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse, T. C., & Thornhill, D. J. (2011). Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One, 6(12), e29013. https://doi.org/10.1371/journal.pone.0029013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., & Santos, S. R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16), 2570–2580. https://doi.org/10.1016/j.cub.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  • Ledreux, A., Krys, S., & Bernard, C. (2009). Suitability of the Neuro-2a cell line for the detection of palytoxin and analogues (neurotoxic phycotoxins). Toxicon, 53(2), 300–308. https://doi.org/10.1016/j.toxicon.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  • Lenoir, S., Ten-Hage, L., Turquet, J., Quod, J. -P., Bernard, C., & Hennion, M. -C. (2004). First evidence of palytoxin analogues from an Ostreopsis mascarenensis (Dinophyceae) benthic bloom in southwestern Indian Ocean. Journal of Phycology, 40(6), 1042–1051. https://doi.org/10.1111/j.1529-8817.2004.04016.x

  • López, C., Reimer, J. D., Brito, A., Simón, D., Clemente, S., & Hernández, M. (2019). Diversity of zoantharian species and their symbionts from the Macaronesian and Cape Verde ecoregions demonstrates their widespread distribution in the Atlantic Ocean. Coral Reefs, 38(2), 269–283.

    Article  Google Scholar 

  • Low, M. E., Sinniger, F., & Reimer, J. D. (2016). The order Zoantharia Rafinesque, 1815 (Cnidaria, Anthozoa: Hexacorallia): supraspecific classification and nomenclature. ZooKeys, 641, 1–80. https://doi.org/10.3897/zookeys.641.10346

  • Miller, K. J., & Benzie, J. A. H. (1997). No clear genetic distinction between morphological species within the coral genus Platygyra. Bulletin of Marine Science, 61(3), 907–917.

    Google Scholar 

  • Mizuyama, M., Iguchi, A., Iijima, M., Gibu, K., & Reimer, J. D. (2020). Comparison of Symbiodiniaceae diversities in different members of a Palythoa species complex (Cnidaria: Anthozoa: Zoantharia)–Implications for ecological adaptations to different microhabitats. PeerJ, 8, e8449. https://doi.org/10.7717/peerj.8449

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, R. E., & Scheuer, P. J. (1971). Palytoxin a new marine toxin from a Coelenterate. Nature, 172(3982), 495–498. https://doi.org/10.1126/science.172.3982.495

    Article  CAS  Google Scholar 

  • Moore, R. B., Ferguson, K. M., Loh, W. K., Hoegh-Guldberg, O., & Carter, D. A. (2003). Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium. International Journal of Systematic and Evolutionary Microbiology, 53(6), 1725–1734. https://doi.org/10.1099/ijs.0.02594-0

    Article  CAS  PubMed  Google Scholar 

  • Moshirfar, M., Khalifa, Y. M., Espandar, L., & Mifflin, M. D. (2010). Aquarium coral keratoconjunctivitis. Archives of Ophthalmology, 128(10), 1360–1362. https://doi.org/10.1001/archophthalmol.2010.206

    Article  PubMed  Google Scholar 

  • Moshirfar, M., Hastings, J., Ronquillo, Y., & Patel, B. C. (2021). Palytoxin keratitis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 31985993.

  • Nakamura, H., Asari, T., Ohizumi, Y., Kobayashi, J., Yamasu, T., & Murai, A. (1993). Isolation of zooxanthellatoxins, novel vasoconstrictive substances from the zooxanthella Symbiodinium sp. Toxicon, 31(4), 371–376. https://doi.org/10.1016/0041-0101(93)90172-F

    Article  CAS  PubMed  Google Scholar 

  • Noda, H., Parkinson, J. E., Yang, S. Y., & Reimer, J. D. (2017). A preliminary survey of zoantharian endosymbionts shows high genetic variation over small geographic scales on Okinawa-jima Island, Japan. Peerj, 5(2), e3740. https://doi.org/10.7717/peerj.3740

  • Nordt, S. P., Wu, J., Zahller, S., Clark, R. F., & Cantrell, F. L. (2011). Palytoxin poisoning after dermal contact with zoanthid coral. The Journal of Emergency Medicine, 40(4), 397–399. https://doi.org/10.1016/j.jemermed.2009.05.004

    Article  PubMed  Google Scholar 

  • O’Dea, A., Lessios, H. A., Coates, A. G., Eytan, R. I., Restrepo-Moreno, S. A., et al. (2016). Formation of the Isthmus of Panama. Science Advances, 2(8), e1600883. https://doi.org/10.1126/sciadv.1600883

    Article  PubMed  PubMed Central  Google Scholar 

  • Oku, N., Sata, N. U., Matsunaga, S., Uchida, H., & Fusetani, N. (2004). Identification of palytoxin as a principle which causes morphological changes in rat 3Y1 cells in the zoanthid Palythoa aff. margaritae. Toxicon, 43(1), 21–25. https://doi.org/10.1016/j.toxicon.2003.10.012

  • Ong, C. W., Reimer, J. D., & Todd, P. A. (2013). Morphologically plastic responses to shading in the zoanthids Zoanthus sansibaricus and Palythoa tuberculosa. Marine Biology, 160, 1053–1064. https://doi.org/10.1007/s00227-012-2158-4

    Article  Google Scholar 

  • Onodera, K., Nakamura, H., Oba, Y., & Ojika, M. (2004). Zooxanthellamide B, a novel large polyhydroxy metabolite from a marine dinoflagellate of Symbiodinium sp. Bioscience, Biotechnology, and Biochemistry, 68(4), 955–958. https://doi.org/10.1271/bbb.68.955

    Article  CAS  PubMed  Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14(9), 817–818. https://doi.org/10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  • Quinn, R. J., Kashiwagi, M., Moore, R. E., & Norton, T. R. (1974). Anticancer activity of zoanthids and the associated toxin, palytoxin, against Ehrlich ascites tumor and P-388 lymphocytic leukemia in mice. Journal of Pharmaceutical Sciences, 63(2), 257–260. https://doi.org/10.1002/jps.2600630217

    Article  CAS  PubMed  Google Scholar 

  • Reimer, J. D., & Todd, P. (2009). Preliminary molecular examination of zooxanthellate zoanthid (Hexacorallia, Zoantharia) and associated zooxanthellae (Symbiodinium spp.) diversity in Singapore. The Raffles Bulletin of Zoology, 22, 103–120.

    Google Scholar 

  • Reimer, J. D., Ono, S., Fujiwara, Y., Takishita, K., & Tsukahara, J. (2004). Reconsidering Zoanthus spp. diversity: Molecular evidence of conspecifity within four previously presumed species. Zoological Science, 21(5), 517–525. https://doi.org/10.2108/zsj.21.517

  • Reimer, J. D., Ono, S., Iwama, A., Tsukahara, J., & Maruyama, T. (2006a). High levels of morphological variation despite close genetic relatedness between Zoanthus aff. vietnamensis and Zoanthus kuroshio (Anthozoa: Hexacorallia). Zoological Science, 23(9), 755–761. https://doi.org/10.2108/zsj.23.755

  • Reimer, J. D., Ono, S., Takishita, K., Tsukahara, J., & Maruyama, T. (2006b). Molecular evidence suggesting species in the zoanthid genera Palythoa and Protopalythoa (Anthozoa: Hexacorallia) are congeneric. Zoological Science, 23(1), 87–94. https://doi.org/10.2108/zsj.23.87

    Article  CAS  PubMed  Google Scholar 

  • Reimer, J. D., Takishita, K., & Maruyama, T. (2006c). Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorallia) in Japan. Coral Reefs, 25, 521–527. https://doi.org/10.1007/s00338-006-0151-4

  • Reimer, J. D., Takishita, K., Ono, S., Tsukahara, J., & Maruyama, T. (2007). Molecular evidence suggesting interspecific hybridization in Zoanthus spp. (Anthozoa: Hexacorallia). Zoological Science, 24(4), 46–359. https://doi.org/10.2108/zsj.24.346

  • Reimer, J. D., Hirose, M., & Wirtz, P. (2010). Zoanthids of the Cape Verde Islands and their symbionts: Previously unexamined diversity in the Northeastern Atlantic. Contributions to Zoology, 79(4), 47–163. https://doi.org/10.1163/18759866-07904002

    Article  Google Scholar 

  • Reimer, J. D., Foord, C., & Irei, Y. (2012). Species diversity of shallow water zoanthids (Cnidaria: Anthozoa: Hexacorallia) in Florida. Journal of Marine Biology, 2012, 1–14. https://doi.org/10.1155/2012/856079

    Article  CAS  Google Scholar 

  • Reimer, J. D., Irei, Y., Fujii, T., & Yang, S. -Y. (2013). Molecular analyses of shallow-water zooxanthellate zoanthids (Cnidaria: Hexacorallia) from Taiwan and their Symbiodinium spp. Zoological Studies, 52, 38. https://doi.org/10.1186/1810-522X-52-38

  • Reimer, J. D., Lorion, J., Irei, Y., Hoeksema, B. W., & Wirtz, P. (2014). Ascension Island shallow-water Zoantharia(Hexacorallia: Cnidaria) and theirzooxanthellae (Symbiodinium). Journal of the Marine Biological Association of the United Kingdom, 97(4), 695–703.

    Article  Google Scholar 

  • Reimer, J. D., Herrera, M., Gatins, R., Roberts, M. B., Parkinson, J. E., & Berumen, M. L. (2017a). Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea. Journal of Biogeography, 44(3), 661–673. https://doi.org/10.1111/jbi.12795

  • Reimer, J. D., Montenegro, J., Santos, M. E. A., Low, M. E. Y., Herrera Sarrias, M., Gatins, R., Roberts, M. B., & Berumen, M. L. (2017b). Zooxanthellate zoantharians (Anthozoa: Hexacorallia: Zoantharia: Brachycnemina) in the northern Red Sea. Marine Biodiversity. https://doi.org/10.1007/s12526-017-0706-3

  • Richards, Z. T., & Hobbs, J. P. A. (2015). Hybridisation on coral reefs and the conservation of evolutionary novelty. Current Zoology, 61(1), 132–145. https://doi.org/10.1093/czoolo/61.1.132

    Article  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Rossi, R., Castellano, V., Scalco, E., Serpe, L., Zingone, A., & Soprano, V. (2010). New palytoxin-like molecules in Mediterranean Ostreopsis cf. ovata (dinoflagellates) and in Palythoa tuberculosa detected by liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Toxicon, 56(8), 1381–1387. https://doi.org/10.1016/j.toxicon.2010.08.003

  • Ruiz, Y., Fuchs, J., Beuschel, R., Tschopp, M., & Goldblum, D. (2015). Dangerous reef aquaristics: Palytoxin of a brown encrusting anemone causes toxic corneal reactions. Toxicon, 106, 42–45. https://doi.org/10.1016/j.toxicon.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  • Schulz, M., Łoś, A., Szabelak, A., & Strachecka, A. (2019). Inhalation poisoning with palytoxin from aquarium coral: Case description and safety advice. Archives of Industrial Hygiene and Toxicology, 70(1), 14–17. https://doi.org/10.2478/aiht-2019-70-3209

    Article  PubMed  Google Scholar 

  • Seemann, P., Gernert, C., Schmitt, S., Mebs, D., & Hentschel, U. (2009). Detection of hemolytic bacteria from Palythoa caribaeorum (Cnidaria, Zoantharia) using a novel palytoxin-screening assay. Antonie Van Leeuwenhoek, 96(4), 405–411. https://doi.org/10.1007/s1048-009-9353-4

    Article  CAS  PubMed  Google Scholar 

  • Shi, T., Niu, G., Kvitt, H., Zheng, X., Qin, Q., Sun, D., Ji, Z., & Tchernov, D. (2021). Untangling ITS2 genotypes of algal symbionts in zooxanthellate corals. Molecular Ecology Resources, 21(1), 137–152. https://doi.org/10.1111/1755-0998.13250

  • Sikorskaya, T. V., Efimova, K. V., & Imbs, A. B. (2021). Lipidomes of phylogenetically different symbiotic dinoflagellates of corals. Phytochemistry, 181, 112579. https://doi.org/10.1016/j.phytochem.2020.112579

    Article  CAS  PubMed  Google Scholar 

  • Silverstein, R. N., Cunning, R., & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology, 21(1), 236–249. https://doi.org/10.1111/gcb.12706

    Article  PubMed  Google Scholar 

  • Sinniger, F., Reimer, J. D., & Pawlowski, J. (2008). Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zoological Science, 25(12), 1253–1260. https://doi.org/10.2108/zsj.25.1253

    Article  CAS  PubMed  Google Scholar 

  • Snoeks, L., & Veenstra, J. (2012). Family with fever after cleaning a sea aquarium. Nederlands Tijdschrift Voor Geneeskunde, 156(12), A4200.

    PubMed  Google Scholar 

  • Takishita, K., Ishikura, M., Koike, K., & Maruyama, T. (2003). Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia, 42(3), 285–291. https://doi.org/10.2216/i0031-8884-42-3-285.1

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197

  • Tartaglione, L., Pelin, M., Morpurgo, M., Dell’Aversano, C., Montenegro, J., Sacco, G., Sosa, S., Reimer, J. D., Ciminiello, P., & Tubaro, A. (2016). An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon. Toxicon, 121, 41–50. https://doi.org/10.1016/j.toxicon.2016.08.012

    Article  CAS  PubMed  Google Scholar 

  • Terajima, T., Uchida, H., Abe, N., & Yasumoto, T. (2018). Simple structural elucidation of ostreocin-B, a new palytoxin congener isolated from the marine dinoflagellate Ostreopsis siamensis, using complementary positive and negative ion liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Communication in Mass Spectrometry, 32(12), 1001–1007. https://doi.org/10.1002/rcm.8130

    Article  CAS  Google Scholar 

  • Terajima, T., Uchida, H., Abe, N., & Yasumoto, T. (2019). Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate Ostreopsis siamensis, using LC/Q-TOF MS. Bioscience, Biotechnology, and Biochemistry, 83(3), 381–390. https://doi.org/10.1080/09168451.2018.1550356

    Article  CAS  PubMed  Google Scholar 

  • Thornhill, D. J., Lewis, A. M., Wham, D. C., & LaJeunesse, T. C. (2014). Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution, 68(2), 352–367. https://doi.org/10.1111/evo.12270. Epub 2013 Oct 17. PMID: 24134732.

  • Uemura, T., Hirata, Y., Iwashita, T., & Naoki, H. (1985). Studies on palytoxins. Tetrahedron, 41(6), 1007–1017. https://doi.org/10.1016/S0040-4020(01)96468-3

    Article  CAS  Google Scholar 

  • Ukena, T., Satake, M., Usami, M., Oshima, Y., Naoki, H., Fujita, T., Kan, Y., & Yasumoto, T. (2001). Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis. Bioscience, Biotechnology, and Biochemistry, 65(11), 2585–2588. https://doi.org/10.1271/bbb.65.2585

    Article  CAS  PubMed  Google Scholar 

  • Valverde, I., Lago, J., Reboreda, A., Vieites, J. M., & Cabado, A. G. (2008). Characteristics of palytoxin induced cytotoxicity in neuroblastoma cells. Toxicology in Vitro, 22(6), 1432–1439. https://doi.org/10.1016/j.tiv.2008.04.012

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.-T., Chen, Y.-Y., Chen, C. A., & Meng, P.-J. (2012). Determination of the thermal tolerance of Symbiodinium using the activation energy for inhibiting photosystem II activity. Zoological Studies, 51(2), 137–142.

    CAS  Google Scholar 

  • Wee, H. B., Berumen, M. L., Ravasi, T., & Reimer, J. D. (2020). Symbiodiniaceae diversity of Palythoa tuberculosa in the central and southern Red Sea influenced by environmental factors. Coral Reefs, 39(6), 1619–1633. https://doi.org/10.1007/s00338-020-01989-5

    Article  Google Scholar 

  • Wonneberger, W., Claesson, M., & Zetterberg, M. (2020). Corneal perforation due to palytoxin exposure of domestic zoanthid corals. Acta Ophthalmologica. https://doi.org/10.1111/aos.14594

    Article  PubMed  Google Scholar 

  • Yasumoto, T., & Murata, M. (1990). Polyether toxins involved in seafood poisoning. In S. Hall & G. Strichartz (Eds.), Marine Toxins (pp. 120–132). American Chemical Society.

    Chapter  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to James Reimer for helpful discussions on the systematics and phylogeny of Zoantharia during this study. The authors also wish to thank Daniel Papillon who provided English corrections. Sampling of zoantharians by diving in the Caribbean was made possible by a commercial MLD collection license from the US Government (State of Florida SPL #932658 with MLD endorsement #1117).

Author information

Authors and Affiliations

Authors

Contributions

LS and YP carried out the molecular experiments and phylogenetic analyses. LS and JL did the PLTX purification, HPLC, and mass spectrometry experiments. LS, CN, and JL did the MALDI-IMS analyses. CF collected specimens of Zoanthus and Palythoa species in Florida and maintained the clonal populations of Palythoa aff. clavata and P. heliodiscus. JL, YP, and LS drafted the manuscript. JL and YP conceived and supervised the study. All authors read, amended, and approved the final manuscript.

Corresponding author

Correspondence to Ludovic Sawelew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawelew, L., Nuccio, C., Foord, C. et al. Symbiodiniaceae diversity and characterization of palytoxin in various zoantharians (Anthozoa, Hexacorallia). Org Divers Evol 22, 555–576 (2022). https://doi.org/10.1007/s13127-022-00550-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-022-00550-2

Keywords

Navigation