Skip to main content

Advertisement

Log in

HIF-1 signaling: an emerging mechanism for mitochondrial dynamics

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract 

A growing emphasis has been paid to the function of mitochondria in tumors, neurodegenerative disorders (NDs), and cardiovascular diseases. Mitochondria are oxygen-sensitive organelles whose function depends on their structural basis. Mitochondrial dynamics are critical in regulating the structure. Mitochondrial dynamics include fission, fusion, motility, cristae remodeling, and mitophagy. These processes could alter mitochondrial morphology, number, as well as distribution, to regulate complicated cellular signaling processes like metabolism. Meanwhile, they also could modulate cell proliferation and apoptosis. The initiation and progression of several diseases, such as tumors, NDs, cardiovascular disease, were all interrelated with mitochondrial dynamics. HIF-1 is a nuclear protein presented as heterodimers, and its transcriptional activity is triggered by hypoxia. It plays an important role in numerous physiological processes including the development of cardiovascular system, immune system, and cartilage. Additionally, it could evoke compensatory responses in cells during hypoxia through upstream and downstream signaling networks. Moreover, the alteration of oxygen level is a pivotal factor to promote mitochondrial dynamics and HIF-1 activation. HIF-1α might be a promising target for modulating mitochondrial dynamics to develop therapeutic approaches for NDs, immunological diseases, and other related diseases. Here, we reviewed the research progress of mitochondrial dynamics and the potential regulatory mechanism of HIF-1 in mitochondrial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Adebayo M, Singh S, Singh AP, Dasgupta S (2021) Mitochondrial fusion and fission: the fine-tune balance for cellular homeostasis. Faseb J 35(6):e21620. https://doi.org/10.1096/fj.202100067R

    Article  CAS  PubMed  Google Scholar 

  2. Annesley SJ, Fisher PR (2019) Mitochondria in health and disease. Cells 8(7):680. https://doi.org/10.3390/cells8070680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1. 5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294(2):H570–H578. https://doi.org/10.1152/ajpheart.01324.2007

    Article  CAS  PubMed  Google Scholar 

  4. Baker N, Patel J, Khacho M (2019) Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics. Mitochondrion 49:259–268. https://doi.org/10.1016/j.mito.2019.06.003

    Article  CAS  PubMed  Google Scholar 

  5. Belaidi E, Morand J, Gras E, Pépin J-L, Godin-Ribuot D (2016) Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications. Pharmacol Ther 168:1–11. https://doi.org/10.1016/j.pharmthera.2016.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berbusse GW, Woods LC, Vohra BP, Naylor K (2016) Mitochondrial dynamics decrease prior to axon degeneration induced by vincristine and are partially rescued by overexpressed cytNmnat1. Front Cell Neurosci 10:179. https://doi.org/10.3389/fncel.2016.00179

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bereiter-Hahn J, Jendrach M (2010) Mitochondrial dynamics. Int Rev Cell Mol Biol 284:1–65. https://doi.org/10.1016/S19376448(10)84001-8

    Article  CAS  PubMed  Google Scholar 

  8. Blum TB, Hahn A, Meier T, Davies KM, Kühlbrandt W (2019) Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc Natl Acad Sci U S A 116(10):4250–4255. https://doi.org/10.1073/pnas.1816556116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonnet S, Michelakis ED, Porter CJ et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113(22):2630–2641. https://doi.org/10.1161/CIRCULATIONAHA.105.609008

    Article  CAS  PubMed  Google Scholar 

  10. Brandt T, Cavellini L, Kühlbrandt W, Cohen MM (2016) A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro. Elife 5:e14618. https://doi.org/10.7554/eLife.14618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chakrabarti R, Ji W-K, Stan RV, de Juan SJ, Ryan TA, Higgs HN (2018) INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J Cell Biol 217(1):251–268. https://doi.org/10.1083/jcb.201709111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan DC (2020) Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 15:235–259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711

    Article  CAS  PubMed  Google Scholar 

  13. Chen H, Chan DC (2009) Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. https://doi.org/10.1093/hmg/ddp326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen X, Yao JM, Fang X et al (2019) Hypoxia promotes pulmonary vascular remodeling via HIF-1α to regulate mitochondrial dynamics. J Geriatr Cardiol 16(12):855–871. https://doi.org/10.11909/j.issn.1671-5411.2019.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chernivec E, Cooper J, Naylor K (2018) Exploring the effect of rotenone-a known inducer of Parkinson’s disease-on mitochondrial dynamics in dictyostelium discoideum. Cells 7(11):201. https://doi.org/10.3390/cells7110201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiche J, Rouleau M, Gounon P, Brahimi-Horn MC, Pouysségur J, Mazure NM (2010) Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. J Cell Physiol 222(3):648–657. https://doi.org/10.1002/jcp.21984

    Article  CAS  PubMed  Google Scholar 

  17. Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci 41(3):261–273. https://doi.org/10.1016/j.tibs.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  18. Compernolle V, Brusselmans K, Franco D, Moorman A, Dewerchin M, Collen D, Carmeliet P (2003) Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha. Cardiovasc Res 60(3):569–579. https://doi.org/10.1016/j.cardiores.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  19. Epstein AC, Gleadle JM, McNeill LA et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107(1):43–54. https://doi.org/10.1016/s0092-8674(01)00507-4

    Article  CAS  PubMed  Google Scholar 

  20. Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157(4):882–896. https://doi.org/10.1016/j.cell.2014.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J (2015) MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. Elife 4:e07739. https://doi.org/10.7554/eLife.07739

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, Ma HK, Jiang MD, Xu TT, Xu J et al (2020) HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol 36:101671. https://doi.org/10.1016/j.redox.2020.101671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao QT, Tian RY, Han HL et al (2022) PINK1-mediated Drp1S616 phosphorylation modulates synaptic development and plasticity via promoting mitochondrial fission. Signal Transduct Target Ther 7(1):103. https://doi.org/10.1038/s41392-022-00933-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao S, Hu JJ (2021) Mitochondrial fusion: the machineries in and out. Trends Cell Biol 31(1):62–74. https://doi.org/10.1016/j.tcb.2020.09.008

    Article  CAS  PubMed  Google Scholar 

  25. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131. https://doi.org/10.1038/ncb2012

    Article  CAS  PubMed  Google Scholar 

  26. Ghose P, Park EC, Tabakin A, Salazar-Vasquez N, Rongo C (2013) Anoxia-reoxygenation regulates mitochondrial dynamics through the hypoxia response pathway, SKN-1/Nrf, and stomatin-like protein STL-1/SLP-2. PLoS Genet 9(12):e1004063. https://doi.org/10.1371/journal.pgen.1004063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 21(4):204–224. https://doi.org/10.1038/s41580-020-0210-7

    Article  CAS  PubMed  Google Scholar 

  28. Hagen T (2012) Oxygen versus reactive oxygen in the regulation of HIF-1: the balance tips. Biochem Res Int 436981. https://doi.org/10.1155/2012/436981.

  29. He G, Nie JJ, Liu X, Ding Z, Luo P, Liu Y, Zhang BW, Wang R, Liu X, Hai Y et al (2023) Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioact Mater 19:690–702. https://doi.org/10.1016/j.bioactmat.2022.05.006

    Article  CAS  PubMed  Google Scholar 

  30. Hu S, Zhang C, Ni L, Huang C, Chen D, Shi K, Jin H, Zhang K, Li Y, Xie L et al (2020) Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis 11(6):481. https://doi.org/10.1038/s41419-020-2680-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11(8):958–966. https://doi.org/10.1038/ncb1907

    Article  CAS  PubMed  Google Scholar 

  32. Islam ST, Won J, Khan M, Mannie MD, Singh I (2021) Hypoxia-inducible factor-1 drives divergent immunomodulatory functions in the pathogenesis of autoimmune diseases. Immunology 164(1):31–42. https://doi.org/10.1111/imm.13335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kashatus DF (2018) The regulation of tumor cell physiology by mitochondrial dynamics. Biochem Biophys Res Commun 500(1):9–16. https://doi.org/10.1016/j.bbrc.2017.06.192

    Article  CAS  PubMed  Google Scholar 

  34. Khosravi S, Harner ME (2020) The MICOS complex, a structural element of mitochondria with versatile functions. Biol Chem 401(6–7):765–778. https://doi.org/10.1515/hsz-2020-0103

    Article  CAS  PubMed  Google Scholar 

  35. Kierans S, Taylor C (2021) Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol 599(1):23–37. https://doi.org/10.1113/JP280572

    Article  CAS  PubMed  Google Scholar 

  36. Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten Lambert H, Ruberto FP, Nemir M, Wai T, Pedrazzini T (2021) Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593(7859):435–439. https://doi.org/10.1038/s41586-021-03510-6

    Article  CAS  PubMed  Google Scholar 

  37. Liesa M, Shirihai OS (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17(4):491–506. https://doi.org/10.1016/j.cmet.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li WJ, Xiang ZD, Xing YX, Li S, Shi SL (2022) Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury. Cell Death Dis 13(4):1–12. https://doi.org/10.1038/s41419-022-04770-4

    Article  CAS  Google Scholar 

  39. Li YM, Zhou BP, Deng J, Pan Y, Hay N, Hung MC (2005) A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res 65(8):3257–3263. https://doi.org/10.1158/0008-5472.CAN-04-1284

    Article  CAS  PubMed  Google Scholar 

  40. Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF (2020) Mitophagy and neuroprotection. Trends Mol Med 26(1):8–20. https://doi.org/10.1016/j.molmed.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  41. Magrané J, Manfredi G (2009) Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxid Redox Signal 11(7):1615–1626. https://doi.org/10.1089/ARS.2009.2604

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mazure N, Brahimi-Horn M, Pouyssegur J (2011) Hypoxic mitochondria: accomplices in resistance. Bull Cancer 98(5):E40–E46. https://doi.org/10.1684/bdc.2011.1360

    Article  Google Scholar 

  43. Menrad H, Werno C, Schmid T, Copanaki E, Deller T, Dehne N, Brüne B (2010) Roles of hypoxia-inducible factor-1alpha (HIF-1alpha) versus HIF-2alpha in the survival of hepatocellular tumor spheroids. Hepatology 51(6):2183–2192. https://doi.org/10.1002/hep.23597

    Article  CAS  PubMed  Google Scholar 

  44. Mishra P (2016) Interfaces between mitochondrial dynamics and disease. Cell Calcium 60(3):190–198. https://doi.org/10.1016/j.ceca.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  45. Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104(3):917–927. https://doi.org/10.1242/jcs.104.3.917

    Article  PubMed  Google Scholar 

  46. Movafagh S, Crook S, Vo K (2015) Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem 116(5):696–703. https://doi.org/10.1002/jcb.25074

    Article  CAS  PubMed  Google Scholar 

  47. Palikaras K, Lionaki E, Tavernarakis N (2015) Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521(7553):525–528. https://doi.org/10.1038/nature14300

    Article  CAS  PubMed  Google Scholar 

  48. Panchal K, Tiwari AK (2021) Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion 56:118–135. https://doi.org/10.1016/j.mito.2020.10.005

    Article  CAS  PubMed  Google Scholar 

  49. Rakovic A, Ziegler J, Mårtensson CU, Prasuhn J, Shurkewitsch K, König P, Paulson HL, Klein C (2019) PINK1-dependent mitophagy is driven by the UPS and can occur independently of LC3 conversion. Cell Death Differ 26(8):1428–1441. https://doi.org/10.1038/s41418-018-0219-z

    Article  CAS  PubMed  Google Scholar 

  50. Rocha AG, Franco A, Krezel AM, Rumsey JM, Alberti JM, Knight WC, Biris N, Zacharioudakis E, Janetka JW, Baloh RH et al (2018) MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 360(6386):336–341. https://doi.org/10.1126/science.aao1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salminen A, Kaarniranta K, Kauppinen A (2016) Hypoxia-inducible histone lysine demethylases impact on the aging process and age-related diseases. Aging Dis 7(2):180–200. https://doi.org/10.14336/AD.2015.0929

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5(6):a011304. https://doi.org/10.1101/cshperspect.a011304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3’to the human erythropoietin gene. Proc Natl Acad Sci U S A 88(13):5680–5684. https://doi.org/10.1073/pnas.88.13.5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shanmughapriya S, Langford D, Natarajaseenivasan K (2020) Inter and intracellular mitochondrial trafficking in health and disease. Ageing Res Rev 62:101128. https://doi.org/10.1016/j.arr.2020.101128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shields LY, Kim H, Zhu L, Haddad D, Berthet A, Pathak D, Lam M, Ponnusamy R, Diaz-Ramirez LG, Gill TM et al (2015) Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis 6(4):e1725. https://doi.org/10.1038/cddis.2015.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi J, Yu TX, Song K et al (2021) Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol. 41:101954. https://doi.org/10.1016/j.redox.2021.101954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409(1):19–26. https://doi.org/10.1042/BJ20071249

    Article  CAS  PubMed  Google Scholar 

  58. Thomas LW, Staples O, Turmaine M, Ashcroft M (2017) CHCHD4 regulates intracellular oxygenation and perinuclear distribution of mitochondria. Front Oncol 7:71. https://doi.org/10.3389/fonc.2017.00071

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62(3):341–360. https://doi.org/10.1042/EBC20170104

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107(1):378–383. https://doi.org/10.1073/pnas.0911187107

    Article  PubMed  Google Scholar 

  61. Wai T, Langer T (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 27(2):105–117. https://doi.org/10.1016/j.tem.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Hu XJ, Peng RY, Wang SM, Gao YB, Wang LF, Wu ZY (2007) Expression and significance of hypoxia inducible factor-1 alpha in rat brain after HPM exposure. Chin J Publ Health 23(10):1161–1163. https://doi.org/10.11847/zgggws2007-23-10-05

    Article  Google Scholar 

  63. Wang YY, Mao X, Chen HG, Feng JC, Yan MY, Wang YQ, Yu YH (2019) Dexmedetomidine alleviates LPS-induced apoptosis and inflammation in macrophages by eliminating damaged mitochondria via PINK1 mediated mitophagy. Int Immunopharmacol 73:471–481. https://doi.org/10.1016/j.intimp.2019.05.027

    Article  CAS  PubMed  Google Scholar 

  64. Woods LC, Berbusse GW, Naylor K (2016) Microtubules are essential for mitochondrial dynamics–fission, fusion, and motility-in dictyostelium discoideum. Front Cell Dev Biol 4:19. https://doi.org/10.3389/fcell.2016.00019

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu K, Mao YY, Chen Q, Zhang BL, Zhang S, Wu HJ, Li Y (2021) Hypoxia-induced ROS promotes mitochondrial fission and cisplatin chemosensitivity via HIF-1α/Mff regulation in head and neck squamous cell carcinoma. Cell Oncol (Dordr) 44(5):1167–1181. https://doi.org/10.1007/s13402-021-00629-6

    Article  CAS  PubMed  Google Scholar 

  66. Yang C, Zhong ZF, Wang SP, Vong CT, Bin Y, Wang YT (2021) HIF-1: structure, biology and natural modulators. Chin J Nat Med 19(7):521–527. https://doi.org/10.1016/S1875-5364(21)60051-1

    Article  CAS  PubMed  Google Scholar 

  67. Yang J, Staples O, Thomas LW, Briston T, Robson M, Poon E, Simões ML, El-Emir E, Buffa FM, Ahmed A et al (2012) Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression. J Clin Invest 122(2):600–611. https://doi.org/10.1172/JCI58780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yapa NM, Lisnyak V, Reljic B, Ryan MT (2021) Mitochondrial dynamics in health and disease. FEBS Lett 595(8):1184–1204. https://doi.org/10.1002/1873-3468.14077

    Article  CAS  PubMed  Google Scholar 

  69. Zhang T, Xue L, Li L, Tang C, Wan Z, Wang R, Tan J, Tan Y, Han H, Tian R et al (2016) BNIP3 protein suppresses PINK1 kinase proteolytic cleavage to promote mitophagy. J Biol Chem 291(41):21616–21629. https://doi.org/10.1074/jbc.M116.733410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng YR, Zhang XN, Chen Z (2019) Mitochondrial transport serves as a mitochondrial quality control strategy in axons: implications for central nervous system disorders. CNS Neurosci Ther 25(7):876–886. https://doi.org/10.1111/cns.13122

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of China (No. 82073511).

Author information

Authors and Affiliations

Authors

Contributions

Yu Xin wrote the manuscript. Li Zhao and Ruiyun Peng revised the manuscript. All the authors read and approved the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Li Zhao or Ruiyun Peng.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

Mitochondrial dynamics directly affected the condition of mitochondria and modulated cell proliferation and apoptosis. The initiation and progression of tumors, neurodegenerative disorders, and cardiovascular disease are largely interrelated with mitochondrial dynamics.

HIF-1 evokes the compensatory responses of cells to hypoxia through regulating target genes to cause physiological and pathological alterations.

Oxygen served as a hub for interactions between mitochondrial dynamics and HIF-1.

HIF-1 regulated mitochondrial dynamics not only via promoting proliferation of abnormal cells but also through protecting cells against damage.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Zhao, L. & Peng, R. HIF-1 signaling: an emerging mechanism for mitochondrial dynamics. J Physiol Biochem 79, 489–500 (2023). https://doi.org/10.1007/s13105-023-00966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00966-0

Keywords

Navigation