Skip to main content

Advertisement

Log in

Expression of miR-34a and miR-15b during the progression of cervical cancer in a murine model expressing the HPV16 E7 oncoprotein

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The high-risk human papillomavirus (HR-HPV) E7 oncoprotein appears to be a major determinant for cell immortalization and transformation altering critical processes such as cell proliferation, apoptosis, and immune response. This oncoprotein plays an essential role in cervical carcinogenesis, but other cofactors such as long-term use of hormonal contraceptives are necessary to modulate the risk of cervical cancer (CC). The role of HR-HPVs in the alteration of microRNA (miRNA) levels in persistent viral infections currently remains unclear. The aim of this study was to evaluate the miR-34a and miR-15b expression levels in the murine HPV16K14E7 (K14E7) transgenic model after chronic estrogen (E2) treatment and their involvement in CC. Interestingly, results showed that, although miR-34a expression is elevated by the HPVE7 oncogene, this expression was downregulated in the presence of both the E7 oncoprotein and chronic E2 in cervical carcinoma. On the other hand, miR-15b expression was upregulated along cervical carcinogenesis mainly by the effect of E2. These different changes in the expression levels of miR-34a and miR-15b along cervical carcinogenesis conduced to low apoptosis levels, high cell proliferation and finally, to cancerous cervical tissue development. In this work, we also determined the relative mRNA expression of Cyclin E2 (Ccne2), Cyclin A2 (Ccna2), and B cell lymphoma 2 (Bcl-2) (target genes of miR-34a and miR-15b); Sirtuin 1 (Sirt1), Cmyc, and Bax (miR-34a target genes); and p21/WAF1 (mir15b target gene) and the H-ras oncogene. Given the modifications in the expression levels of miR-34a and miR-15b during the development of cervical cancer, it will be useful to carry out further investigation to confirm them as molecular biomarkers of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bosch FX, Burchell AN, Schiffman M, Giuliano AR, de Sanjose S, Bruni L, Tortolero-Luna G, Kjaer SK, Muñoz N (2015) Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 19(10):K1–K16

  2. Zur Hausen H (2009) Papillomaviruses in the causation of human cancers - a brief historical account. Virology 20:260–265

    Article  CAS  Google Scholar 

  3. Yugawa T, Kiyono T (2009) Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins. Rev Med Virol 19:97–113

    Article  CAS  Google Scholar 

  4. Shin MK, Balsitis S, Brake T, Lambert PF (2009) Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res 15:5656–5663

    Article  CAS  Google Scholar 

  5. Hwang SG, Lee D, Kim J, Seo T, Choe J (2002) Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem 25:2923–2930

    Article  CAS  Google Scholar 

  6. Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL (2001) Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 26:7888–7898

    Article  Google Scholar 

  7. McLaughlin-Drubin ME, Crum CP, Münger K (2011) Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A 108:2130–2135

    Article  Google Scholar 

  8. McLaughlin-Drubin ME, Huh KW, Münger K (2008) Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol 82:8695–8705

    Article  CAS  Google Scholar 

  9. Brake T, Connor JP, Petereit DG, Lambert PF (2003) Comparative analysis of cervical cancer in women and in a human papillomavirus-transgenic mouse model: identification of minichromosome maintenance protein 7 as an informative biomarker for human cervical cancer. Cancer Res 1:8173–8180

    Google Scholar 

  10. Brake T, Lambert PF (2005) Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proc Natl Acad Sci U S A 102:2490–2495

    Article  CAS  Google Scholar 

  11. Munguía-Moreno JA, Díaz-Chavéz J, García-Villa E, Albino-Sanchez ME, Mendoza-Villanueva D, Ocadiz-Delgado R, Bonilla-Delgado J, Marín-Flores A, Cortés-Malagón EM, Alvarez-Rios E, Hidalgo-Miranda A, Üren A, Çelik H, Lambert PF, Gariglio P (2018) Early synergistic interactions between the HPV16-E7 oncoprotein and 17β-oestradiol for repressing the expression of Granzyme B in a cervical cancer model. Int J Oncol 53:579–591

    PubMed  PubMed Central  Google Scholar 

  12. González-Quintana V, Palma-Berré L, Campos-Parra AD, López-Urrutia E, Peralta-Zaragoza O, Vazquez-Romo R, Pérez-Plasencia C (2016) MicroRNAs are involved in cervical cancer development, progression, clinical outcome and improvement treatment response. Oncol Rep 35:3–12

    Article  CAS  Google Scholar 

  13. Wen F, Xu JZ, Wang XR (2017) Increased expression of miR-15b is associated with clinicopathological features and poor prognosis in cervical carcinoma. Arch Gynecol Obstet 295(3):743–749

    Article  CAS  Google Scholar 

  14. Zhang L, Liao Y, Tang L (2019) MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38:53

    Article  Google Scholar 

  15. Li XJ, Ren ZJ, Tang JH (2014) MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis 5:e1327

    Article  CAS  Google Scholar 

  16. Ocadiz-Delgado R, Castañeda-Saucedo E, Indra AK, Hernandez-Pando R, Flores-Guizar P, Cruz-Colin JL, Recillas-Targa F, Perez-Ishiwara G, Covarrubias L, Gariglio P (2012) RXRα deletion and E6E7 oncogene expression are sufficient to induce cervical malignant lesions in vivo. Cancer Lett 28:226–236

    Article  CAS  Google Scholar 

  17. Song S, Liem A, Miller JA, Lambert PF (2000) Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology 15:141–150

    Article  CAS  Google Scholar 

  18. Edlich F (2018) BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun 500:26–34

    Article  CAS  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  20. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, Gaddis S, MacLeod MC, Aldaz CM (2000) Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res 1:5977–5983

    Google Scholar 

  21. Leitman DC, Paruthiyil S, Yuan C, Herber CB, Olshansky M, Tagliaferri M, Cohen I, Speed TP (2012) Tissue-specific regulation of genes by estrogen receptors. Semin Reprod Med 30:14–22

    Article  CAS  Google Scholar 

  22. Lewis-Wambi JS, Jordan VC (2009) Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 11:206

    Article  CAS  Google Scholar 

  23. Moreno V, Bosch FX, Muñoz N, Meijer CJ, Shah KV, Walboomers JM, Herrero R, Franceschi S, International Agency for Research on Cancer. Multicentric Cervical Cancer Study Group (2003) The role of steroid contraceptive hormones in the pathogenesis of invasive cervical cancer: a review. Int J Gynecol Cancer 13:103–110

    Google Scholar 

  24. Moreno V, Bosch FX, Muñoz N, Meijer CJLM, Shah KV, Walboomers JMM, Herrero R, Franceschi S (2002) Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet 359:1085–1092

    Article  CAS  Google Scholar 

  25. Mesia-Vela S, Sanchez RI, Li JJ, Li SA, Conney AH, Kauffman FC (2002) Catechol estrogen formation in liver microsomes from female ACI and Sprague-Dawley rats: comparison of 2- and 4-hydroxylation revisited. Carcinogenesis 23:1369–1372

    Article  CAS  Google Scholar 

  26. Park JW, Nickel KP, Torres AD, Lee D, Lambert PF, Kimple RJ (2014) Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiother Oncol 113:337–344

    Article  CAS  Google Scholar 

  27. Duensing S, Münger K (2004) Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer 20:157–162

    Article  CAS  Google Scholar 

  28. Wallace NA, Galloway DA (2014) Manipulation of cellular DNA damage repair machinery facilitates propagation of human papillomaviruses. Semin Cancer Biol 26:30–42

    Article  CAS  Google Scholar 

  29. Zhao C, Wang G, Zhu Y, Li X, Yan F, Zhang C, Huang X, Zhang Y (2016) Aberrant regulation of miR-15b in human malignant tumors and its effects on the hallmarks of cancer. Tumour Biol 37:177–183

    Article  CAS  Google Scholar 

  30. Ji WB, Liu X, Luo Y, Zhang WZ (2016) High expression of miR-15b predicts poor prognosis for hepatocellular carcinoma after curative hepatectomy. Oncol Rep 36:1901–1908

    Article  CAS  Google Scholar 

  31. Bueno MJ, Gómez de Cedrón M, Laresgoiti U, Fernández-Piqueras J, Zubiaga AM, Malumbres M (2010) Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 30:2983–2995

    Article  CAS  Google Scholar 

  32. Liu J, Yang L, Zhang J, Zhang J, Chen Y, Li K, Li Y, Li Y, Yao L, Guo G (2012) Knock-down of NDRG2 sensitizes cervical cancer Hela cells to cisplatin through suppressing Bcl-2 expression. BMC Cancer 12:370

    Article  CAS  Google Scholar 

  33. Cortés-Malagón EM, Bonilla-Delgado J, Díaz-Chávez J, Hidalgo-Miranda A, Romero-Cordoba S, Uren A, Celik H, McCormick M, Munguía-Moreno JA, Ibarra-Sierra E, Escobar-Herrera J, Lambert PF, Mendoza-Villanueva D, Bermudez-Cruz RM, Gariglio P (2013) Gene expression profile regulated by the HPV16 E7 oncoprotein and estradiol in cervical tissue. Virology 447(1-2):155–165

    Article  CAS  Google Scholar 

  34. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sültmann H, Scheffner M, Hoppe-Seyler K, Hoppe-Seyler F (2015) Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoSPathog 11:e1004712

    Google Scholar 

  35. Spurgeon ME, den Boon JA, Horswill M, Barthakur S, Forouzan O, Rader JS, Beebe DJ, Roopra A, Ahlquist P, Lambert PF (2017) Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proc Natl Acad Sci U S A 114(43):E9076–E9085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Lauro Macías, Dr. Jorge Fernández-Hernández, Dr. Ricardo Gaxiola-Centeno, Dr. Benjamin Chávez-Álvarez, and Dr. Rafael Leyva-Muñoz (CINVESTAV-IPN, México) for excellent technical support.

Availability of data and material

Not applicable

Code availability

Not applicable

Funding

This work was supported by Consejo Nacional de Ciencia y Tecnologia (CONACyT-Mexico; grant number: 0201904).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Rodolfo Ocadiz-Delgado, Patricio Gariglio, Elizabeth Alvarez-Rios, and Enrique García-Villa contributed to data collection and analysis. Material preparation and experimental procedures were performed by Rodolfo Ocadiz-Delgado, Jose-Luis Cruz-Colin, Antonio Torres-Carrillo, Karina Hernandez-Mendoza, Juan-Cristobal Conde-Pérezprina and Guadalupe-Isabel Dominguez-Gomez. The first draft of the manuscript was written by Rodolfo Ocadiz-Delgado, Paul F Lambert and Patricio Gariglio. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Patricio Gariglio.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All mouse procedures were approved by the Research Unit for Laboratory Animal Care Committee (UPEAL-CINVESTAV-IPN, Mexico; NOM-062-ZOO-1999).

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points -miR-34a is downregulated by HPVE7 oncoprotein and E2 in cervical carcinoma-miR-15b is upregulated in cervical carcinogenesis by E2-miR-34a and miR-15b expression levels could be useful as cervical cancer biomarkers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocadiz-Delgado, R., Cruz-Colin, JL., Alvarez-Rios, E. et al. Expression of miR-34a and miR-15b during the progression of cervical cancer in a murine model expressing the HPV16 E7 oncoprotein. J Physiol Biochem 77, 547–555 (2021). https://doi.org/10.1007/s13105-021-00818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00818-9

Keywords

Navigation