Skip to main content
Log in

Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Skeletal muscle atrophy commonly occurs during ageing, thus pathways that regulate muscle mass may represent a potential therapeutic avenue for interventions. In this review, we explored the Hippo signalling pathway which plays an essential role in human oncogenesis and the pathway’s influence on myogenesis and satellite cell functions, on supporting cells such as fibroblasts, and autophagy. YAP/TAZ was found to regulate both myoblast proliferation and differentiation, albeit with unique roles. Additionally, YAP/TAZ has different functions depending on the expressing cell type, making simple inference of their effects difficult. Studies in cancers have shown that the Hippo pathway influenced the autophagy pathway, although with mixed results. Most of the present researches on YAP/TAZ are focused on its oncogenicity and further studies are needed to translate these findings to physiological ageing. Taken together, the modulation of YAP/TAZ or the Hippo pathway in general may offer potential new strategies for the prevention or treatment of ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chan SW, Lim CJ, Chen L, Chong YF, Huang C, Song H, Hong W (2011) The Hippo pathway in biological control and cancer development. J Cell Physiol 226:928–939. https://doi.org/10.1002/jcp.22435

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991S. https://doi.org/10.1093/jn/127.5.990S

    Article  CAS  PubMed  Google Scholar 

  3. Chen L-K, Liu L-K, Woo J, Assantachai P, Auyeung T-W, Bahyah KS, Chou M-Y, Chen L-Y, Hsu P-S, Krairit O, Lee JSW, Lee W-J, Lee Y, Liang C-K, Limpawattana P, Lin C-S, Peng L-N, Satake S, Suzuki T, Won CW, Wu C-H, Wu S-N, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15:95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  Google Scholar 

  4. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  5. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, Fearon KC, Laviano A, Maggio M, Fanelli FR, Schneider SM, Schols A, Sieber CC (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29:154–159. https://doi.org/10.1016/j.clnu.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  6. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Bautmans I, Baeyens J-P, Cesari M, Cherubini A, Kanis J, Maggio M, Martin F, Michel J-P, Pitkala K, Reginster J-Y, Rizzoli R, Sánchez-Rodríguez D, Schols J (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  7. Bauer J, Morley JE, Schols AMWJ, Ferrucci L, Cruz-Jentoft AJ, Dent E, Baracos VE, Crawford JA, Doehner W, Heymsfield SB, Jatoi A, Kalantar-Zadeh K, Lainscak M, Landi F, Laviano A, Mancuso M, Muscaritoli M, Prado CM, Strasser F, Haehling S, Coats AJS, Anker SD (2019) Sarcopenia: a time for action. An SCWD Position Paper. J Cachexia Sarcopenia Muscle 10:956–961. https://doi.org/10.1002/jcsm.12483

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393:2636–2646. https://doi.org/10.1016/s0140-6736(19)31138-9

    Article  PubMed  Google Scholar 

  9. Dhillon RJS, Hasni S (2017) Pathogenesis and management of sarcopenia. Clin Geriatr Med 33:17–26. https://doi.org/10.1016/j.cger.2016.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kulkarni A, Chang MT, Vissers JHA, Dey A, Harvey KF (2020) The Hippo pathway as a driver of select human cancers. Trends in Cancer 6:781–796. https://doi.org/10.1016/j.trecan.2020.04.004

    Article  CAS  PubMed  Google Scholar 

  11. Calses PC, Crawford JJ, Lill JR, Dey A (2019) Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends in Cancer 5:297–307. https://doi.org/10.1016/j.trecan.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Kim C-L, Choi S-H, Mo J-S (2019) Role of the Hippo pathway in fibrosis and cancer. Cells 8. https://doi.org/10.3390/cells8050468

  13. Kuenzi BM, Ideker T (2020) A census of pathway maps in cancer systems biology. Nat Rev Cancer 20:233–246. https://doi.org/10.1038/s41568-020-0240-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng Y, Pan D (2019) The Hippo signaling pathway in development and disease. Dev Cell 50:264–282. https://doi.org/10.1016/j.devcel.2019.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gnimassou O, Francaux M, Deldicque L (2017) Hippo pathway and skeletal muscle mass regulation in mammals: a controversial relationship. Front Physiol 8. https://doi.org/10.3389/fphys.2017.00190

  16. Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ (2019) Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol 126:30–43. https://doi.org/10.1152/japplphysiol.00685.2018

    Article  CAS  PubMed  Google Scholar 

  17. Watt KI, Goodman CA, Hornberger TA, Gregorevic P (2018) The Hippo signaling pathway in the regulation of skeletal muscle mass and function. Exerc Sport Sci Rev 46:92–96. https://doi.org/10.1249/JES.0000000000000142

    Article  PubMed  PubMed Central  Google Scholar 

  18. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9:534–546. https://doi.org/10.1101/gad.9.5.534

    Article  CAS  PubMed  Google Scholar 

  19. Tao W, Zhang S, Turenchalk GS, Stewart RA, St John MAR, Chen W, Xu T (1999) Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat Genet 21:177–181. https://doi.org/10.1038/5960

    Article  CAS  PubMed  Google Scholar 

  20. Xu T, Wang W, Zhang S, Stewart RA, Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121:1053–1063

    CAS  PubMed  Google Scholar 

  21. Lai Z-C, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho L-L, Li Y (2005) Control of cell proliferation and apoptosis by Mob as tumor suppressor, Mats. Cell 120:675–685. https://doi.org/10.1016/j.cell.2004.12.036

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi Y (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11:1380–1385. https://doi.org/10.1158/1078-0432.Ccr-04-1773

    Article  CAS  PubMed  Google Scholar 

  23. Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114:457–467. https://doi.org/10.1016/s0092-8674(03)00557-9

    Article  CAS  PubMed  Google Scholar 

  24. Pantalacci S, Tapon N, Leopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5:921–927. https://doi.org/10.1038/ncb1051

    Article  CAS  PubMed  Google Scholar 

  25. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G (2003) Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5:914–920. https://doi.org/10.1038/ncb1050

    Article  CAS  PubMed  Google Scholar 

  26. Wu S, Huang J, Dong J, Pan D (2003) Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and Warts. Cell 114:445–456. https://doi.org/10.1016/s0092-8674(03)00549-x

    Article  CAS  PubMed  Google Scholar 

  27. Tapon N, Harvey KF, Bell DW, Wahrer DCR, Schiripo TA, Haber DA, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–478. https://doi.org/10.1016/s0092-8674(02)00824-3

    Article  CAS  PubMed  Google Scholar 

  28. Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19:6778–6791. https://doi.org/10.1093/emboj/19.24.6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9:2145–2152

    CAS  PubMed  Google Scholar 

  30. Yagi R, Chen L-F, Shigesada K, Murakami Y, Ito Y (1999) A WW domain-containing Yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J 18:2551–2562. https://doi.org/10.1093/emboj/18.9.2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vassilev A (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15:1229–1241. https://doi.org/10.1101/gad.888601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huh H, Kim D, Jeong H-S, Park H (2019) Regulation of TEAD transcription factors in cancer biology. Cells 8. https://doi.org/10.3390/cells8060600

  33. Xiao JH, Davidson I, Matthes H, Garnier J-M, Chambon P (1991) Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65:551–568. https://doi.org/10.1016/0092-8674(91)90088-g

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida T (2008) MCAT elements and the TEF-1 family of transcription factors in muscle development and disease. Arterioscler Thromb Vasc Biol 28:8–17. https://doi.org/10.1161/atvbaha.107.155788

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Y, Huang T, Cheng A, Yu J, Kang W, To K (2016) The TEAD family and its oncogenic role in promoting tumorigenesis. International Journal of Molecular Sciences 17. doi:https://doi.org/10.3390/ijms17010138

  36. Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–1971. https://doi.org/10.1101/gad.1664408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajbhandari P, Lopez G, Capdevila C, Salvatori B, Yu J, Rodriguez-Barrueco R, Martinez D, Yarmarkovich M, Weichert-Leahey N, Abraham BJ, Alvarez MJ, Iyer A, Harenza JL, Oldridge D, De Preter K, Koster J, Asgharzadeh S, Seeger RC, Wei JS, Khan J, Vandesompele J, Mestdagh P, Versteeg R, Look AT, Young RA, Iavarone A, Lasorella A, Silva JM, Maris JM, Califano A (2018) Cross-cohort analysis identifies a TEAD4–MYCN positive feedback loop as the core regulatory element of high-risk neuroblastoma. Cancer Discov 8:582–599. https://doi.org/10.1158/2159-8290.Cd-16-0861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansen CG, Ng YLD, Lam W-LM, Plouffe SW, Guan K-L (2015) The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 25:1299–1313. https://doi.org/10.1038/cr.2015.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cosset É, Ilmjärv S, Dutoit V, Elliott K, von Schalscha T, Camargo MF, Reiss A, Moroishi T, Seguin L, Gomez G, Moo JS, Preynat-Seauve O, Krause KH, Chneiweiss H, Sarkaria JN, Guan KL, Dietrich PY, Weis SM, Mischel PS, Cheresh DA (2017) Glut3 addiction is a druggable vulnerability for a molecularly defined subpopulation of glioblastoma. Cancer Cell 32:856–868.e855. https://doi.org/10.1016/j.ccell.2017.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Xiao Z-D, Li X, Aziz KE, Gan B, Johnson RL, Chen J (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17:490–499. https://doi.org/10.1038/ncb3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basu S, Totty NF, Irwin MS, Sudol M, Downward J (2003) Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11:11–23. https://doi.org/10.1016/s1097-2765(02)00776-1

    Article  CAS  PubMed  Google Scholar 

  42. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122:421–434. https://doi.org/10.1016/j.cell.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  43. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao Y, Chun A, Cheung K, Rashidi B, Yang X (2008) Tumor suppressor LATS1 is a negative regulator of OncogeneYAP. J Biol Chem 283:5496–5509. https://doi.org/10.1074/jbc.M709037200

    Article  CAS  PubMed  Google Scholar 

  45. Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, Zhao S, Xiong Y, Guan KL (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol 28:2426–2436. https://doi.org/10.1128/mcb.01874-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Judson RN, Tremblay AM, Knopp P, White RB, Urcia R, De Bari C, Zammit PS, Camargo FD, Wackerhage H (2012) The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci 125:6009–6019. https://doi.org/10.1242/jcs.109546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun C, De Mello V, Mohamed A, Ortuste Quiroga HP, Garcia-Munoz A, Al Bloshi A, Tremblay AM, von Kriegsheim A, Collie-Duguid E, Vargesson N, Matallanas D, Wackerhage H, Zammit PS (2017) Common and distinctive functions of the Hippo effectors Taz and Yap in skeletal muscle stem cell function. Stem Cells 35:1958–1972. https://doi.org/10.1002/stem.2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Watt KI, Judson R, Medlow P, Reid K, Kurth TB, Burniston JG, Ratkevicius A, Bari CD, Wackerhage H (2010) Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Commun 393:619–624. https://doi.org/10.1016/j.bbrc.2010.02.034

    Article  CAS  PubMed  Google Scholar 

  49. Watt KI, Turner BJ, Hagg A, Zhang X, Davey JR, Qian H, Beyer C, Winbanks CE, Harvey KF, Gregorevic P (2015) The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nat Commun 6. https://doi.org/10.1038/ncomms7048

  50. Mohamed A, Sun C, De Mello V, Selfe J, Missiaglia E, Shipley J, Murray GI, Zammit PS, Wackerhage H (2016) The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma. J Pathol 240:3–14. https://doi.org/10.1002/path.4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tremblay Annie M, Missiaglia E, Galli Giorgio G, Hettmer S, Urcia R, Carrara M, Judson Robert N, Thway K, Nadal G, Selfe Joanna L, Murray G, Calogero Raffaele A, De Bari C, Zammit Peter S, Delorenzi M, Wagers Amy J, Shipley J, Wackerhage H, Camargo Fernando D (2014) The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer Cell 26:273–287. https://doi.org/10.1016/j.ccr.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  52. Jeong H, Bae S, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Hwang ES (2010) TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J 24:3310–3320. https://doi.org/10.1096/fj.09-151324

    Article  CAS  PubMed  Google Scholar 

  53. Pei T, Huang X, Long Y, Duan C, Liu T, Li Y, Huang W (2019) Increased expression of YAP is associated with decreased cell autophagy in the eutopic endometrial stromal cells of endometriosis. Molecular and Cellular Endocrinology 491. doi:https://doi.org/10.1016/j.mce.2019.04.012

  54. Yu B, Huo L, Liu Y, Deng P, Szymanski J, Li J, Luo X, Hong C, Lin J, Wang CY (2018) PGC-1alpha controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ. Cell Stem Cell 23:193. https://doi.org/10.1016/j.stem.2018.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barsh GS, Joshi S, Davidson G, Le Gras S, Watanabe S, Braun T, Mengus G, Davidson I (2017) TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo. PLOS Genetics 13. doi:https://doi.org/10.1371/journal.pgen.1006600

  56. Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP (2017) Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget 8:20428–20440. https://doi.org/10.18632/oncotarget.14670

    Article  PubMed  PubMed Central  Google Scholar 

  57. Haroon M, Boers HE, Hoogaars WM, Le Grand F, Giordani L, Deldicque L, Koppo K, Bakker AD, Klein-Nulend J, Jaspers RT (2018) Aging associated reduction in skeletal muscle stem cell proliferation rate is accompanied by reduced focal adhesion formation, and increased yap signalling. J Cachexia Sarcopenia Muscle 9:1149. https://doi.org/10.1002/jcsm.12365

    Article  Google Scholar 

  58. Judson RN, Gray SR, Walker C, Carroll AM, Itzstein C, Lionikas A, Zammit PS, De Bari C, Wackerhage H (2013) Constitutive expression of Yes-associated protein (Yap) in adult skeletal muscle fibres induces muscle atrophy and myopathy. PLoS One 8:e59622. https://doi.org/10.1371/journal.pone.0059622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stearns-Reider KM, D’Amore A, Beezhold K, Rothrauff B, Cavalli L, Wagner WR, Vorp DA, Tsamis A, Shinde S, Zhang C, Barchowsky A, Rando TA, Tuan RS, Ambrosio F (2017) Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 16:518–528. https://doi.org/10.1111/acel.12578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johansen AKZ, Molkentin JD (2019) Hippo signaling does it again: arbitrating cardiac fibroblast identity and activation. Genes Dev 33:1457–1459. https://doi.org/10.1101/gad.332791.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gui Y, Li J, Lu Q, Feng Y, Wang M, He W, Yang J, Dai C (2018) Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. J Biol Chem 293:16364–16375. https://doi.org/10.1074/jbc.RA118.004073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liang M, Yu M, Xia R, Song K, Wang J, Luo J, Chen G, Cheng J (2017) Yap/Taz deletion in Gli+ cell-derived myofibroblasts attenuates fibrosis. J Am Soc Nephrol 28:3278–3290. https://doi.org/10.1681/asn.2015121354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS, Dobie R, Harvey E, Zeef L, Farrow S, Streuli C, Henderson NC, Friedman SL, Hanley NA, Piper Hanley K (2016) PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun 7. https://doi.org/10.1038/ncomms12502

  64. Xiao Y, Hill MC, Li L, Deshmukh V, Martin TJ, Wang J, Martin JF (2019) Hippo pathway deletion in adult resting cardiac fibroblasts initiates a cell state transition with spontaneous and self-sustaining fibrosis. Genes Dev 33:1491–1505. https://doi.org/10.1101/gad.329763.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  66. Jiao J, Demontis F (2017) Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol 34:1–6. https://doi.org/10.1016/j.coph.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  67. Lee D, Bareja A, Bartlett D, White J (2019) Autophagy as a therapeutic target to enhance aged muscle regeneration. Cells 8. doi:https://doi.org/10.3390/cells8020183

  68. Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825. https://doi.org/10.1016/j.cell.2010.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsai S, Sitzmann JM, Dastidar SG, Rodriguez AA, Vu SL, McDonald CE, Academia EC, O’Leary MN, Ashe TD, La Spada AR, Kennedy BK (2015) Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity. J Clin Investig 125:2952–2964. https://doi.org/10.1172/jci77361

    Article  PubMed  PubMed Central  Google Scholar 

  70. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42. https://doi.org/10.1038/nature16187

    Article  CAS  PubMed  Google Scholar 

  71. McMillan Elliott M, Quadrilatero J (2014) Autophagy is required and protects against apoptosis during myoblast differentiation. Biochem J 462:267–277. https://doi.org/10.1042/bj20140312

    Article  CAS  PubMed  Google Scholar 

  72. Pérez E, Das G, Bergmann A, Baehrecke EH (2014) Autophagy regulates tissue overgrowth in a context-dependent manner. Oncogene 34:3369–3376. https://doi.org/10.1038/onc.2014.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee YA, Noon LA, Akat KM, Ybanez MD, Lee T-F, Berres M-L, Fujiwara N, Goossens N, Chou H-I, Parvin-Nejad FP, Khambu B, Kramer EGM, Gordon R, Pfleger C, Germain D, John GR, Campbell KN, Yue Z, Yin X-M, Cuervo AM, Czaja MJ, Fiel MI, Hoshida Y, Friedman SL (2018) Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nat Commun 9:4962. https://doi.org/10.1038/s41467-018-07338-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yuan P, Hu Q, He X, Long Y, Song X, Wu F, He Y, Zhou X (2020) Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death & Disease 11. doi:https://doi.org/10.1038/s41419-020-2343-1

  75. Tang F, Gao R, Jeevan-Raj B, Wyss CB, Kalathur RKR, Piscuoglio S, Ng CKY, Hindupur SK, Nuciforo S, Dazert E, Bock T, Song S, Buechel D, Morini MF, Hergovich A, Matthias P, Lim D-S, Terracciano LM, Heim MH, Hall MN, Christofori G (2019) LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nat Commun 10:5755. https://doi.org/10.1038/s41467-019-13591-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou Y, Wang Y, Zhou W, Chen T, Wu Q, Chutturghoon VK, Lin B, Geng L, Yang Z, Zhou L, Zheng S (2019) YAP promotes multi-drug resistance and inhibits autophagy-related cell death in hepatocellular carcinoma via the RAC1-ROS-mTOR pathway. Cancer Cell International 19. doi:https://doi.org/10.1186/s12935-019-0898-7

  77. Murgia M, Toniolo L, Nagaraj N, Ciciliot S, Vindigni V, Schiaffino S, Reggiani C, Mann M (2017) Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Rep 19:2396–2409. https://doi.org/10.1016/j.celrep.2017.05.054

    Article  CAS  PubMed  Google Scholar 

  78. Kuo CC, Ling HH, Chiang MC, Chung CH, Lee WY, Chu CY, Wu YC, Chen CH, Lai YW, Tsai IL, Cheng CH, Lin CW (2019) Metastatic colorectal cancer rewrites metabolic program through a Glut3-YAP-dependent signaling circuit. Theranostics 9:2526–2540. https://doi.org/10.7150/thno.32915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. White SM, Avantaggiati ML, Nemazanyy I, Di Poto C, Yang Y, Pende M, Gibney GT, Ressom HW, Field J, Atkins MB, Yi C (2019) YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev Cell 49:425–443.e429. https://doi.org/10.1016/j.devcel.2019.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF (2018) The muscle stem cell niche in health and disease. In: Myogenesis in development and disease. Curr Top Dev Biol:23–65. https://doi.org/10.1016/bs.ctdb.2017.08.003

  81. Hwang AB, Brack AS (2018) Muscle stem cells and aging. In: Myogenesis in development and disease. Current topics in developmental biology. pp. 299–322. doi:https://doi.org/10.1016/bs.ctdb.2017.08.008

  82. Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J Phys Cell Phys 256:C1262–C1266. https://doi.org/10.1152/ajpcell.1989.256.6.C1262

    Article  CAS  Google Scholar 

  83. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271. https://doi.org/10.1038/nm.3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360. https://doi.org/10.1038/nature11438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764. https://doi.org/10.1038/nature03260

    Article  CAS  PubMed  Google Scholar 

  86. Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081. https://doi.org/10.1126/science.1191035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kumar A, Lacraz G, Rouleau A-J, Couture V, Söllrald T, Drouin G, Veillette N, Grandbois M, Grenier G (2015) Increased stiffness in aged skeletal muscle impairs muscle progenitor cell proliferative activity. Plos One 10. doi:https://doi.org/10.1371/journal.pone.0136217

  88. Wood LK, Kayupov E, Gumucio JP, Mendias CL, Claflin DR, Brooks SV (2014) Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J Appl Physiol 117:363–369. https://doi.org/10.1152/japplphysiol.00256.2014

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. https://doi.org/10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  90. Fry CS, Kirby TJ, Kosmac K, McCarthy JJ, Peterson CA (2017) Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy. Cell Stem Cell 20:56–69. https://doi.org/10.1016/j.stem.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  91. Distefano G, Goodpaster BH (2018) Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med 8. https://doi.org/10.1101/cshperspect.a029785

  92. Gabriel BM, Hamilton DL, Tremblay AM, Wackerhage H (2016) The Hippo signal transduction network for exercise physiologists. J Appl Physiol 120:1105–1117. https://doi.org/10.1152/japplphysiol.01076.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dasgupta I, McCollum D (2019) Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem 294:17693–17706. https://doi.org/10.1074/jbc.REV119.007963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Panciera T, Azzolin L, Cordenonsi M, Piccolo S (2017) Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18:758–770. https://doi.org/10.1038/nrm.2017.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goodman CA, Dietz JM, Jacobs BL, McNally RM, You J-S, Hornberger TA (2015) Yes-associated protein is up-regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy. FEBS Lett 589:1491–1497. https://doi.org/10.1016/j.febslet.2015.04.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hulmi JJ, Oliveira BM, Silvennoinen M, Hoogaars WMH, Ma H, Pierre P, Pasternack A, Kainulainen H, Ritvos O (2013) Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins. Am J Physiol Endocrinol Metab 304:E41–E50. https://doi.org/10.1152/ajpendo.00389.2012

    Article  CAS  PubMed  Google Scholar 

  97. Brooks MJ, Hajira A, Mohamed JS, Alway SE (2018) Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol 124:1616–1628. https://doi.org/10.1152/japplphysiol.00451.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L (2014) The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci 6. https://doi.org/10.3389/fnagi.2014.00208

  99. Zhao K, Shen C, Lu Y, Huang Z, Li L, Rand CD, Pan J, Sun X-D, Tan Z, Wang H, Xing G, Cao Y, Hu G, Zhou J, Xiong W-C, Mei L (2017) Muscle yap is a regulator of neuromuscular junction formation and regeneration. J Neurosci 37:3465–3477. https://doi.org/10.1523/jneurosci.2934-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brack AS, Muñoz-Cánoves P (2016) The ins and outs of muscle stem cell aging. Skelet Muscle 6. https://doi.org/10.1186/s13395-016-0072-z

  101. Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, Perdiguero E, Muñoz-Cánoves P (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506:316–321. https://doi.org/10.1038/nature13013

    Article  CAS  PubMed  Google Scholar 

  102. Zhao Y, Fei X, Guo J, Zou G, Pan W, Zhang J, Huang Y, Liu T, Cheng W (2017) Induction of reprogramming of human amniotic epithelial cells into iPS cells by overexpression of Yap, Oct4, and Sox2 through the activation of the Hippo-Yap pathway. Exp Ther Med 14:199–206. https://doi.org/10.3892/etm.2017.4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M, Blouin L, Durruthy-Durruthy J, Wong P, Qi Z, Yu J, Qi Lei S, Sebastiano V, Song Jun S, Ramalho-Santos M (2016) YAP induces human naive pluripotency. Cell Rep 14:2301–2312. https://doi.org/10.1016/j.celrep.2016.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen Y-A, Lu C-Y, Cheng T-Y, Pan S-H, Chen H-F, Chang N-S (2019) WW domain-containing proteins YAP and TAZ in the Hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis. Front Oncol 9. https://doi.org/10.3389/fonc.2019.00060

Download references

Funding

We thank the Kementerian Riset, Teknologi, dan Pendidikan Tinggi that supported our research through the World Class Research grant with grant number 1827/UN6.3.1/LT/2020 to Iwan Setiawan and we also thanked the Kementerian Riset, Teknologi, dan Pendidikan Tinggi that supported our research through the World Class Research grant with grant number UN6.3.1/LT/2021 Ronny Lesmana and to Direktorat Jenderal Pendidikan Tinggi Indonesia for the Program Magister Doktoral Sarjana Unggul (PMDSU) grant to Ardo Sanjaya with grant number 211/SP2H/LT/DRPM/2020.

Author information

Authors and Affiliations

Authors

Contributions

Iwan Setiawan, Ardo Sanjaya, and Ronny Lesmana conceived the idea for the article. The literature search was conducted by Iwan Setiawan, Ardo Sanjaya, Ronny Lesmana, Hanna Goenawan, and Paul M Yen. All authors contributed to drafting and critical revision of the article.

Corresponding author

Correspondence to Ronny Lesmana.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Research involving human participant and/or animals

Not applicable

Informed consent

Not applicable

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Code availability

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

•Skeletal muscle mass is regulated through YAP/TAZ effect on myoblast proliferation and differentiation which is altered in aging.

•Ageing is associated with low physical activity which may alter YAP/TAZ levels in myoblasts.

•Ageing causes stiff extracellular matrix and induces further fibrosis through YAP/TAZ.

•YAP has been shown to promote stemness of satellite cells and may be beneficial in ageing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setiawan, I., Sanjaya, A., Lesmana, R. et al. Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. J Physiol Biochem 77, 63–73 (2021). https://doi.org/10.1007/s13105-021-00787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00787-z

Keywords

Navigation