Skip to main content
Log in

Cholecystectomy as a risk factor for metabolic dysfunction-associated fatty liver disease: unveiling the metabolic and chronobiologic clues behind the bile acid enterohepatic circulation

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD) is highly prevalent worldwide. Recent clinical and experimental studies have addressed the association between cholecystectomy and MAFLD, confirming that cholecystectomy is an independent risk factor for MAFLD. In this review, we describe the epidemiologic evidence that links cholecystectomy to MAFLD, and discuss the possible mechanisms behind these connections, in order to unveil the metabolic and chronobiologic signals conveyed by the waves of the bile acid enterohepatic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ali RB, Cahill RA, Watson RG (2004) Weight gain after laparoscopic cholecystectomy. Ir J Med Sci 173:9–12

    Article  PubMed  CAS  Google Scholar 

  2. Al-Khaifi A, Straniero S, Voronova V, Chernikova D, Sokolov V, Kumar C, Angelin B, Rudling M (2018) Asynchronous rhythms of circulating conjugated and unconjugated bile acids in the modulation of human metabolism. J Intern Med 284:546–559

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez-Sola G, Uriarte I, Latasa MU, Fernandez-Barrena MG, Urtasun R, Elizalde M, Barcena-Varela M, Jimenez M, Chang HC, Barbero R, Catalan V, Rodriguez A, Fruhbeck G, Gallego-Escuredo JM, Gavalda-Navarro A, Villarroya F, Rodriguez-Ortigosa CM, Corrales FJ, Prieto J, Berraondo P, Berasain C, Avila MA (2017) Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut 66:1818–1828

    Article  PubMed  CAS  Google Scholar 

  4. Amigo L, Husche C, Zanlungo S, Lutjohann D, Arrese M, Miquel JF, Rigotti A, Nervi F (2011) Cholecystectomy increases hepatic triglyceride content and very-low-density lipoproteins production in mice. Liver Int 31:52–64

    Article  PubMed  CAS  Google Scholar 

  5. Barrera F, Azocar L, Molina H, Schalper KA, Ocares M, Liberona J, Villarroel L, Pimentel F, Perez-Ayuso RM, Nervi F, Groen AK, Miquel JF (2015) Effect of cholecystectomy on bile acid synthesis and circulating levels of fibroblast growth factor 19. Ann Hepatol 14:710–721

    Article  PubMed  CAS  Google Scholar 

  6. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Cales P, Diehl AM (2016) The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63:764–775

    Article  PubMed  CAS  Google Scholar 

  7. Brandl K, Schnabl B (2017) Intestinal microbiota and nonalcoholic steatohepatitis. Curr Opin Gastroenterol 33:128–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ (2012) The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 142:1592–1609

    Article  PubMed  Google Scholar 

  9. Chavez-Tapia NC, Kinney-Novelo IM, Sifuentes-Renteria SE, Torres-Zavala M, Castro-Gastelum G, Sanchez-Lara K, Paulin-Saucedo C, Uribe M, Mendez-Sanchez N (2012) Association between cholecystectomy for gallstone disease and risk factors for cardiovascular disease. Ann Hepatol 11:85–89

    Article  PubMed  CAS  Google Scholar 

  10. Corkey BE, Shirihai O (2012) Metabolic master regulators: sharing information among multiple systems. Trends Endocrinol Metab 23:594–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cortes V, Amigo L, Zanlungo S, Galgani J, Robledo F, Arrese M, Bozinovic F, Nervi F (2015) Metabolic effects of cholecystectomy: gallbladder ablation increases basal metabolic rate through G-protein coupled bile acid receptor Gpbar1-dependent mechanisms in mice. PLoS One 10:e0118478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cortes V, Quezada N, Uribe S, Arrese M, Nervi F (2017) Effect of cholecystectomy on hepatic fat accumulation and insulin resistance in non-obese Hispanic patients: a pilot study. Lipids Health Dis 16:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Debray D, Rainteau D, Barbu V, Rouahi M, El Mourabit H, Lerondel S, Rey C, Humbert L, Wendum D, Cottart CH, Dawson P, Chignard N, Housset C (2012) Defects in gallbladder emptying and bile acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology 142(1581-1591):e1586

    Google Scholar 

  14. Drafahl KA, McAndrew CW, Meyer AN, Haas M, Donoghue DJ (2010) The receptor tyrosine kinase FGFR4 negatively regulates NF-kappaB signaling. PLoS One 5:e14412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eslam M, Sanyal AJ, George J, International Consensus Panel (2020) MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158:1999–2014.e1

    Article  PubMed  CAS  Google Scholar 

  16. Fiorucci S, Distrutti E (2015) Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med 21:702–714

    Article  PubMed  CAS  Google Scholar 

  17. Friedrich D, Marschall HU, Lammert F (2018) Response of fibroblast growth factor 19 and bile acid synthesis after a body weight-adjusted oral fat tolerance test in overweight and obese NAFLD patients: a non-randomized controlled pilot trial. BMC Gastroenterol 18:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Garcia-Monzon C, Vargas-Castrillon J, Porrero JL, Alonso MT, Bonachia O, Castillo MJ, Marcos A, Quiros E, Ramos B, Sanchez-Cabezudo C, Villar S, Saez A, Rodriguez de Cia J, del Pozo E, Vega-Piris L, Soto-Fernandez S, Lo Iacono O, Miquilena-Colina ME (2015) Prevalence and risk factors for biopsy-proven non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in a prospective cohort of adult patients with gallstones. Liver Int 35:1983–1991

    Article  PubMed  Google Scholar 

  19. Ginanni Corradini S, Ripani C, Della Guardia P, Giovannelli L, Elisei W, Cantafora A, Codacci Pisanelli M, Tebala GD, Nuzzo G, Corsi A, Attili AF, Capocaccia L, Ziparo V (1998) The human gallbladder increases cholesterol solubility in bile by differential lipid absorption: a study using a new in vitro model of isolated intra-arterially perfused gallbladder. Hepatology 28:314–322

    Article  PubMed  CAS  Google Scholar 

  20. Gottlieb A, Canbay A (2019) Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression. Cells 8:1358

    Article  PubMed Central  CAS  Google Scholar 

  21. Govindarajan K, MacSharry J, Casey PG, Shanahan F, Joyce SA, Gahan CG (2016) Unconjugated bile acids influence expression of circadian genes: a potential mechanism for microbe-host crosstalk. PLoS One 11:e0167319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Holan KR, Holzbach RT, Hermann RE, Cooperman AM, Claffey WJ (1979) Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology 77:611–617

    Article  PubMed  CAS  Google Scholar 

  23. Housset C, Chretien Y, Debray D, Chignard N (2016) Functions of the gallbladder. Compr Physiol 6:1549–1577

    Article  PubMed  Google Scholar 

  24. Ioannou GN (2010) Cholelithiasis, cholecystectomy, and liver disease. Am J Gastroenterol 105:1364–1373

    Article  PubMed  CAS  Google Scholar 

  25. Ioannou GN, Morrow OB, Connole ML, Lee SP (2009) Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the United States population. Hepatology 50:175–184

    Article  PubMed  CAS  Google Scholar 

  26. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781

    Article  PubMed  CAS  Google Scholar 

  27. Jaruvongvanich V, Sanguankeo A, Upala S (2016) Significant association between gallstone disease and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Dig Dis Sci 61:2389–2396

    Article  PubMed  Google Scholar 

  28. Jaruvongvanich V, Sanguankeo A, Jaruvongvanich S, Upala S (2016) Association between cholecystectomy and nonalcoholic fatty liver disease: a meta-analysis. World J Surg 40:2816–2817

    Article  PubMed  Google Scholar 

  29. Jegatheesan P, Beutheu S, Freese K, Waligora-Dupriet AJ, Nubret E, Butel MJ, Bergheim I, De Bandt JP (2016) Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats. Br J Nutr 116:191–203

    Article  PubMed  CAS  Google Scholar 

  30. Juvonen T, Kervinen K, Kairaluoma MI, Kesaniemi YA (1995) Effect of cholecystectomy on plasma lipid and lipoprotein levels. Hepatogastroenterology 42:377–382

    PubMed  CAS  Google Scholar 

  31. Kanemitsu T, Tsurudome Y, Kusunose N, Oda M, Matsunaga N, Koyanagi S, Ohdo S (2017) Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARalpha. J Biol Chem 292:21397–21406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Keren N, Konikoff FM, Paitan Y, Gabay G, Reshef L, Naftali T, Gophna U (2015) Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ Microbiol Rep 7:874–880

    Article  PubMed  CAS  Google Scholar 

  33. Kibe A, Dudley MA, Halpern Z, Lynn MP, Breuer AC, Holzbach RT (1985) Factors affecting cholesterol monohydrate crystal nucleation time in model systems of supersaturated bile. J Lipid Res 26:1102–1111

    Article  PubMed  CAS  Google Scholar 

  34. Kim D, Kim WR, Kim HJ, Therneau TM (2013) Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology 57:1357–1365

    Article  PubMed  CAS  Google Scholar 

  35. Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ (2011) FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–1624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Koller T, Kollerova J, Hlavaty T, Huorka M, Payer J (2012) Cholelithiasis and markers of nonalcoholic fatty liver disease in patients with metabolic risk factors. Scand J Gastroenterol 47:197–203

    Article  PubMed  CAS  Google Scholar 

  37. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E (2019) The role of the microbiome in NAFLD and NASH. EMBO Mol Med 11

  38. Korean Association for the Study of the L (2013) KASL clinical practice guidelines: management of nonalcoholic fatty liver disease. Clin Mol Hepatol 19:325–348

    Article  Google Scholar 

  39. Krishnamurthy GT, Krishnamurthy S (2002) Hepatic bile entry into and transit pattern within the gallbladder lumen: a new quantitative cholescintigraphic technique for measurement of its concentration function. J Nucl Med 43:901–908

    PubMed  Google Scholar 

  40. Kuhre RE, Wewer Albrechtsen NJ, Larsen O, Jepsen SL, Balk-Moller E, Andersen DB, Deacon CF, Schoonjans K, Reimann F, Gribble FM, Albrechtsen R, Hartmann B, Rosenkilde MM, Holst JJ (2018) Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab 11:84–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kullak-Ublick GA, Paumgartner G, Berr F (1995) Long-term effects of cholecystectomy on bile acid metabolism. Hepatology 21:41–45

    Article  PubMed  CAS  Google Scholar 

  42. Kwak MS, Kim D, Chung GE, Kim W, Kim YJ, Yoon JH (2015) Cholecystectomy is independently associated with nonalcoholic fatty liver disease in an Asian population. World J Gastroenterol 21:6287–6295

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ (2014) Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–735

    Article  PubMed  CAS  Google Scholar 

  44. LaRusso NF, Korman MG, Hoffman NE, Hofmann AF (1974) Dynamics of the enterohepatic circulation of bile acids. Postprandial serum concentrations of conjugates of cholic acid in health, cholecystectomized patients, and patients with bile acid malabsorption. N Engl J Med 291:689–692

    Article  PubMed  CAS  Google Scholar 

  45. Legorreta AP, Silber JH, Costantino GN, Kobylinski RW, Zatz SL (1993) Increased cholecystectomy rate after the introduction of laparoscopic cholecystectomy. JAMA 270:1429–1432

    Article  PubMed  CAS  Google Scholar 

  46. Leuschner UF, Lindenthal B, Herrmann G, Arnold JC, Rössle M, Cordes HJ, Zeuzem S, Hein J, Berg T, NASH Study Group (2020) High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 52:472–479

    Article  CAS  Google Scholar 

  47. Leyva-Alvizo A, Arredondo-Saldaña G, Leal-Isla-Flores V, Romanelli J, Sudan R, Gibbs KE, Petrick A, Soriano IS, ASMBS Foregut Committee (2020) Systematic review of management of gallbladder disease in patients undergoing minimally invasive bariatric surgery. Surg Obes Relat Dis 16:158–164

    Article  PubMed  Google Scholar 

  48. Li H, Guo M, An Z, Meng J, Jiang J, Song J, Wu W (2020) Prevalence and risk factors of metabolic associated fatty liver disease in Xinxiang, China. Int J Environ Res Public Health 17:1818

    Article  PubMed Central  Google Scholar 

  49. Lundasen T, Galman C, Angelin B, Rudling M (2006) Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 260:530–536

    Article  PubMed  CAS  Google Scholar 

  50. Machado M, Marques-Vidal P, Cortez-Pinto H (2006) Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol 45:600–606

    Article  PubMed  Google Scholar 

  51. Machado NM, Cardinelli CS, Shen T, Santo MA, Torrinhas RS, Waitzberg DL (2020) Cholecystectomy - a potential selection bias in studies assessing the metabolic effects of bariatric surgeries. Sci Rep 10:10683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Malagelada JR, Go VL, Summerskill WH, Gamble WS (1973) Bile acid secretion and biliary bile acid composition altered by cholecystectomy. Am J Dig Dis 18:455–459

    Article  PubMed  CAS  Google Scholar 

  53. Man AWC, Xia N, Daiber A, Li H (2020) The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol 177:1278–1293

    Article  PubMed  CAS  Google Scholar 

  54. Marchisello S, Di Pino A, Scicali R, Urbano F, Piro S, Purrello F, Rabuazzo AM (2019) Pathophysiological, molecular and therapeutic issues of nonalcoholic fatty liver disease: an overview. Int J Mol Sci 20:1948

    Article  PubMed Central  CAS  Google Scholar 

  55. Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, Yokoyama M, Honda M, Zen Y, Nakanuma Y, Miyamoto K, Kaneko S (2007) Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46:1392–1403

    Article  PubMed  CAS  Google Scholar 

  56. Mazzoccoli G, Pazienza V, Vinciguerra M (2012) Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 29:227–251

    Article  PubMed  CAS  Google Scholar 

  57. Mazzoccoli G, Vinciguerra M, Oben J, Tarquini R, De Cosmo S (2014) Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int 34:1133–1152

    Article  PubMed  CAS  Google Scholar 

  58. McGlone ER, Bloom SR (2019) Bile acids and the metabolic syndrome. Ann Clin Biochem 56:326–337

    Article  PubMed  CAS  Google Scholar 

  59. Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP (2013) Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58:120–127

    Article  PubMed  CAS  Google Scholar 

  60. Nervi F, Miquel JF, Alvarez M, Ferreccio C, Garcia-Zattera MJ, Gonzalez R, Perez-Ayuso RM, Rigotti A, Villarroel L (2006) Gallbladder disease is associated with insulin resistance in a high risk Hispanic population. J Hepatol 45:299–305

    Article  PubMed  CAS  Google Scholar 

  61. Okamura A, Koyanagi S, Dilxiat A, Kusunose N, Chen JJ, Matsunaga N, Shibata S, Ohdo S (2014) Bile acid-regulated peroxisome proliferator-activated receptor-alpha (PPARalpha) activity underlies circadian expression of intestinal peptide absorption transporter PepT1/Slc15a1. J Biol Chem 289:25296–25305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Pomare EW, Heaton KW (1973) The effect of cholecystectomy on bile salt metabolism. Gut 14:753–762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA (2011) FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab 13:729–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Qu Q, Chen W, Liu X, Wang W, Hong T, Liu W, He X (2020) Role of gallbladder-preserving surgery in the treatment of gallstone diseases in young and middle-aged patients in China: results of a 10-year prospective study. Surgery 167:283–289

    Article  PubMed  Google Scholar 

  65. Ridlon JM, Alves JM, Hylemon PB, Bajaj JS (2013) Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 4:382–387

    Article  PubMed  PubMed Central  Google Scholar 

  66. Roda E, Aldini R, Mazzella G, Roda A, Sama C, Festi D, Barbara L (1978) Enterohepatic circulation of bile acids after cholecystectomy. Gut 19:640–649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ruhl CE, Everhart JE (2013) Relationship of non-alcoholic fatty liver disease with cholecystectomy in the US population. Am J Gastroenterol 108:952–958

    Article  PubMed  Google Scholar 

  68. Salamone F, Bugianesi E (2010) Nonalcoholic fatty liver disease: the hepatic trigger of the metabolic syndrome. J Hepatol 53:1146–1147

    Article  PubMed  Google Scholar 

  69. Saltzman ET, Palacios T, Thomsen M, Vitetta L (2018) Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front Microbiol 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sarashina-Kida H, Negishi H, Nishio J, Suda W, Nakajima Y, Yasui-Kato M, Iwaisako K, Kang S, Endo N, Yanai H, Asagiri M, Kida H, Hattori M, Kumanogoh A, Taniguchi T (2017) Gallbladder-derived surfactant protein D regulates gut commensal bacteria for maintaining intestinal homeostasis. Proc Natl Acad Sci U S A 114:10178–10183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sarin SK, Kumar M, Eslam M, George J, Al Mahtab M, Akbar SMF, Jia J, Tian Q, Aggarwal R, Muljono DH, Omata M, Ooka Y, Han KH, Lee HW, Jafri W, Butt AS, Chong CH, Lim SG, Pwu RF, Chen DS (2020) Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol Hepatol 5:167–228

    Article  PubMed  Google Scholar 

  72. Schumacher JD, Kong B, Pan Y, Zhan L, Sun R, Aa J, Rizzolo D, Richardson JR, Chen A, Goedken M, Aleksunes LM, Laskin DL, Guo GL (2017) The effect of fibroblast growth factor 15 deficiency on the development of high fat diet induced non-alcoholic steatohepatitis. Toxicol Appl Pharmacol 330:1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sedaghat A, Grundy SM (1980) Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med 302:1274–1277

    Article  PubMed  CAS  Google Scholar 

  74. Sharma P, Arora A (2020) Clinical presentation of alcoholic liver disease and non-alcoholic fatty liver disease: spectrum and diagnosis. Transl Gastroenterol Hepatol 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shetty A, Syn WK (2019) Current treatment options for nonalcoholic fatty liver disease. Curr Opin Gastroenterol 35:168–176

    Article  PubMed  CAS  Google Scholar 

  76. Shin DJ, Wang L (2019) Bile acid-activated receptors: a review on FXR and other nuclear receptors. Handb Exp Pharmacol 256:51–72

    Article  PubMed  CAS  Google Scholar 

  77. Sneineh MA, Harel L, Elnasasra A, Razin H, Rotmensh A, Moscovici S, Kais H, Shirin H (2020) Increased incidence of symptomatic cholelithiasis after bariatric Roux-En-Y gastric bypass and previous bariatric surgery: a single center experience. Obes Surg 30:846–850

    Article  PubMed  Google Scholar 

  78. Sonne DP, Hare KJ, Martens P, Rehfeld JF, Holst JJ, Vilsboll T, Knop FK (2013) Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients. Am J Physiol Gastrointest Liver Physiol 304:G413–G419

    Article  PubMed  CAS  Google Scholar 

  79. Titchenell PM, Lazar MA, Birnbaum MJ (2017) Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol Metab 28:497–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Trauner M, Claudel T, Fickert P, Moustafa T, Wagner M (2010) Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis 28:220–224

    Article  PubMed  CAS  Google Scholar 

  81. Tustumi F, Bernardo WM, Santo MA, Cecconello I (2018) Cholecystectomy in patients submitted to bariatric procedure: a systematic review and meta-analysis. Obes Surg 28:3312–3320

    Article  PubMed  Google Scholar 

  82. Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S (2009) The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183:6251–6261

    Article  PubMed  CAS  Google Scholar 

  83. Wada E, Koyanagi S, Kusunose N, Akamine T, Masui H, Hashimoto H, Matsunaga N, Ohdo S (2015) Modulation of peroxisome proliferator-activated receptor-alpha activity by bile acids causes circadian changes in the intestinal expression of Octn1/Slc22a4 in mice. Mol Pharmacol 87:314–322

    Article  PubMed  CAS  Google Scholar 

  84. Walker WH 2nd, Walton JC, DeVries AC, Nelson RJ (2020) Circadian rhythm disruption and mental health. Transl Psychiatry 10:28

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang DQ, Lee SP (2008) Physical chemistry of intestinal absorption of biliary cholesterol in mice. Hepatology 48:177–185

    Article  PubMed  CAS  Google Scholar 

  86. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L (2016) Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 6:32002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489

    Article  PubMed  CAS  Google Scholar 

  88. White DL, Kanwal F, El-Serag HB (2012) Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol 10(1342-1359):e1342

    Article  Google Scholar 

  89. Wojcik M, Janus D, Dolezal-Oltarzewska K, Kalicka-Kasperczyk A, Poplawska K, Drozdz D, Sztefko K, Starzyk JB (2012) A decrease in fasting FGF19 levels is associated with the development of non-alcoholic fatty liver disease in obese adolescents. J Pediatr Endocrinol Metab 25:1089–1093

    Article  PubMed  CAS  Google Scholar 

  90. Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lutjohann D, Kerksiek A, van Kruchten R, Maeda N, Staels B, van Bilsen M, Shiri-Sverdlov R, Hofker MH (2008) Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48:474–486

    Article  PubMed  Google Scholar 

  91. Yilmaz Y, Ayyildiz T, Akin H, Colak Y, Ozturk O, Senates E, Tuncer I, Dolar E (2014) Gallstone disease does not predict liver histology in nonalcoholic fatty liver disease. Gut Liver 8:313–317

    Article  PubMed  CAS  Google Scholar 

  92. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84

    Article  PubMed  Google Scholar 

  93. Yue W, Sun X, Du T (2019) Cholecystectomy versus central obesity or insulin resistance in relation to the risk of nonalcoholic fatty liver disease: the third US National Health and Nutrition Examination Survey. BMC Endocr Disord 19:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yun S, Choi D, Lee KG, Kim HJ, Kang BK, Kim H, Paik SS (2016) Cholecystectomy causes ultrasound evidence of increased hepatic steatosis. World J Surg 40:1412–1421

    Article  PubMed  Google Scholar 

  95. Zhang F, Duan Y, Xi L, Wei M, Shi A, Zhou Y, Wei Y, Wu X (2018) The influences of cholecystectomy on the circadian rhythms of bile acids as well as the enterohepatic transporters and enzymes systems in mice. Chronobiol Int 35:673–690

    Article  PubMed  CAS  Google Scholar 

  96. Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L (2017) Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol Commun 1:1024–1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57:601–609

    Article  PubMed  CAS  Google Scholar 

  98. Zweers SJ, Booij KA, Komuta M, Roskams T, Gouma DJ, Jansen PL, Schaap FG (2012) The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology 55:575–583

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (grant numbers: 81500483 and 81670580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. The gallbladder provides rhythmic release of concentrated bile acids.

2. Bile acids are endocrine and chronobiologic signaling molecules.

3. Bile acid enterohepatic circulation conveys important chronobiologic information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Dai, W., Kong, J. et al. Cholecystectomy as a risk factor for metabolic dysfunction-associated fatty liver disease: unveiling the metabolic and chronobiologic clues behind the bile acid enterohepatic circulation. J Physiol Biochem 77, 497–510 (2021). https://doi.org/10.1007/s13105-020-00782-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00782-w

Keywords

Navigation