Skip to main content
Log in

Optimal selection of components value for analog active filter design using simplex particle swarm optimization

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

The simplex particle swarm optimization (Simplex-PSO) is a swarm intelligent based evolutionary computation method. Simplex-PSO is the hybridization of Nedler–Mead simplex method and particle swarm optimization (PSO) without the velocity term. The Simplex-PSO has fast optimizing capability and high computational precision for high-dimensionality functions. In this paper, Simplex-PSO is employed for selection of optimal discrete component values such as resistors and capacitors for fourth order Butterworth low pass analog active filter and second order State Variable low pass analog active filter, respectively. Simplex-PSO performs the dual task of efficiently selecting the component values as well as minimizing the total design errors of low pass analog active filters. The component values of the filters are selected in such a way so that they become E12/E24/E96 series compatible. The simulation results prove that Simplex-PSO efficiently minimizes the total design error to a greater extent in comparison with previously reported optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Sanchez-Sinencio E, Silva-Martinez J (2000) CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEEE Proc Circuits Devices Syst 147(1):3–12

    Article  Google Scholar 

  2. Zebulum RS, Pacheco MA, Vellasco M (1999) Artificial evolution of active filters: a case study. In: Proceedings of the 1st NASA DoD workshop on evolvable hardware, pp 66–75

  3. Xu H, Ding Y (2009) Optimizing method for analog circuit design using adaptive immune genetic algorithm. In: Proceedings of the international conference on frontier of computer science and technology, pp 359–63

  4. Jiang M, Yang Z, Gan Z (2007) Optimal components selection for analog active filters using clonel selection algorithm. Proc ICICI LNCS 4681:950–959

    Google Scholar 

  5. Vural RA, Yildirim T (2010) Component value selection for analog active filter using particle swarm optimization. In: Proceedings of the 2nd IEEE international conference on computer and automation engineering, vol 1, pp 25–28

  6. Vural RA, Yildirim T, Kadioglu T, Basargan A (2012) Performance evaluation of evolutionary algorithms for optimal filter design. IEEE Trans Evol Comput 16(1):135–147

    Article  Google Scholar 

  7. Vural RA, Bozkurt U, Yildirim T (2013) Analog active filter component selection with nature inspired meta heuristics. Int J Electron Commun (AEÜ) 67(3):197–205

    Article  Google Scholar 

  8. Vural RA, Yildirim T (2010) State variable filter design using particle swarm optimization. In: Proceedings of the XIth international workshop on symbolic and numerical methods, modeling and applications to circuit design, pp 1–4

  9. Kalinli A (2004) Optimal circuit design using immune algorithm. Proc ICARIS LNCS 3239:42–52

    Google Scholar 

  10. Kalinli A (2006) Component value selection for active filters using parallel Tabu search algorithm. Int J Electron Commun (AEÜ) 60(1):85–92

    Article  Google Scholar 

  11. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  12. Eberhart R, Shi Y (1998) Comparison between genetic algorithm and particle swarm optimization. In: Evolutionary programming-VII, Springer, New York, pp 611–616

  13. Luitel B, Venayagamoorthy GK (2010) Particle swarm optimization with quantum infusion for system identification. Eng Appl Artif Intell 23:635–649

    Article  Google Scholar 

  14. Yu X, Liu J, Li H (2009) An adaptive inertia weight particle swarm optimization algorithm for IIR digital filter. In: IEEE international conference on artificial and computational intelligence, pp 114–118

  15. Fang W, Sun J, Xu W (2009) A new mutated quantum behaved particle swarm optimizer for digital IIR filter design. EURASIP J Adv Signal Process 2009 (article ID 367465):1–7

  16. Kennedy J (2003) Bare bones particle swarms. In: IEEE swarm intelligence symposium, USA, pp 80–87, 24–26 April 2003

  17. Hong-feng X, Guan-Zheng T (2010) A novel particle swarm optimizer without velocity: simplex-PSO. J Central South Univ 17(2):349–356

    Article  Google Scholar 

  18. Wang H, Zhi-shu L (2007) A simpler and more effective particle swarm optimization. J Softw 18(4):861–868

    Article  MATH  Google Scholar 

  19. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(2):308–313

    Article  MATH  Google Scholar 

  20. Schaumann R, Valkenburg MV (2001) Design of analog filters. Oxford University Press, New York

    Google Scholar 

  21. Mohan P (2010) Sensitivity analysis of third and fourth-order filters. Circuits Syst Signal Process 29(5):999–1005

    Article  MathSciNet  Google Scholar 

  22. Gomez G, Cuautle ET, de la Fraga LG (2013) Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl Math Comput 222:167–176

    Article  Google Scholar 

  23. Zhang J, Chau K-W (2009) Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. J Univ Comput Sci 15(4):840–858

    MATH  Google Scholar 

  24. Chau KW (2007) Application of a PSO-based neural network in analysis of outcomes of construction claims. Autom Constr 16(5):642–646

    Article  MathSciNet  Google Scholar 

  25. Ali Rıza Yıldız (2009) A novel particle swarm optimization approach for product design and manufacturing. Int J Adv Manuf Technol 40(5–6):617–628

    Google Scholar 

  26. Yildiz AR (2012) A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry 226(D10):1340–1351

  27. Yildiz AR, Solanki KN (2012) Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int J Adv Manuf Technol 59(1–4):367–376

    Article  Google Scholar 

  28. Fakhfakh M, Cooren Y, Sallem A, Loulou M, Siarry P (2010) Analog circuit design optimization through the particle swarm optimization technique. Analog Integr Circuits Signal Process 63(1):71–82

    Article  Google Scholar 

  29. Rana S, Jasola S, Kumar R (2013) A boundary restricted adaptive particle swarm optimization for data clustering. Int J Mach Learn Cybern 4(4):391–400

    Article  Google Scholar 

  30. Wang X-Z, He Y-L, Dong L-C, Zhao H-Y (2011) Particle swarm optimization for determining fuzzy measures from data. Inf Sci 181(19):4230–4252

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, B.P., Kar, R., Mandal, D. et al. Optimal selection of components value for analog active filter design using simplex particle swarm optimization. Int. J. Mach. Learn. & Cyber. 6, 621–636 (2015). https://doi.org/10.1007/s13042-014-0299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-014-0299-0

Keywords

Navigation