Skip to main content
Log in

Hybrid (fuzzy-stochastic) modelling in construction operations management

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

In this work we apply hybrid (fuzzy-stochastic) modelling in construction operations management (COM). One of the most prevailing methods for the COM is the Program (or Project) evaluation review technique, mostly known as PERT. Nevertheless, both classic and fuzzy PERT presents evident drawbacks. Such drawbacks are the subjectivity of estimates for activity durations, the specification to a certain beta distribution and the assumption for applicability of this probability distribution to all project activities. Regarding the fuzzy PERT, a major drawback is the arbitrary choice of fuzzy numbers for the activity duration. In an attempt to reduce these drawbacks and reach more realistic results we propose an alternative hybrid (fuzzy-stochastic) approach. By combining the generalized beta distribution and the fuzzy estimators method, we find the fuzzy activity times (earliest start/finish—latest start/finish) of a project network and also a fuzzy probability for an activity’s duration to be in a certain time interval. A numerical example is given for thorough comprehension of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. AbouRizk SM, Halpin DW (1994) Fitting beta distributions based on sample data. J Constr Eng Manag ASCE 120(2):288–305

    Article  Google Scholar 

  2. Britney RR (1976) Bayesian point estimation and the PERT scheduling of stochastic activities. Manag Sci 22(9):938–948

    Article  MathSciNet  MATH  Google Scholar 

  3. Buckley JJ (1989) Fuzzy PERT. In: Evans GW, Karwowski W, Wilhelm MR (eds) Applications of fuzzy set methodologies in industrial engineering. Elsevier, Amsterdam, pp 103–114

    Google Scholar 

  4. Buckley JJ (2006) Fuzzy probability and statistics. Springer, Berlin (printed in the Netherlands)

    MATH  Google Scholar 

  5. Chanas S (1982) Fuzzy sets in a classical operational research problem. In: Gupta MM, Sanchez E (eds) Approximate reasoning in decision analysis. North-Holland, Amsterdam, pp 351–363

    Google Scholar 

  6. Chanas S, Zielinski P (2001) Critical path analysis in the network with fuzzy activity times. Fuzzy Sets Syst 122:195–204

    Article  MathSciNet  MATH  Google Scholar 

  7. Chanas S, Kamburowski J (1981) The use of fuzzy variables in PERT. Fuzzy Sets Syst 5:11–19

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang S, Tsujimura Y, Gen M, Tozawa T (1995) An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy Sets Syst 76:277–288

    Article  Google Scholar 

  9. Chau KW (2006) Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J Hydrol 329(3–4):363–367

    Article  Google Scholar 

  10. Chen CT, Huang SF (2007) Applying fuzzy method for measuring criticality in project network. Inf Sci 177:2448–2458

    Article  MATH  Google Scholar 

  11. Cheng CT, Ou CP, Chau KW (2002) Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration. J Hydrol 268(1–4):72–86

    Article  Google Scholar 

  12. Dubois D, Fargier H, Galavagnon V (2003) On latest starting times and floats in activity networks with ill-known durations. Eur J Oper Res 147:266–280

    Article  MATH  Google Scholar 

  13. Farrum N, Stanton L (1987) Some results concerning the estimation of beta distribution parameters. J Oper Res Soc 38:287–290

    Google Scholar 

  14. Gazdik I (1983) Fuzzy network planning. IEEE Trans Reliab R-32(3):304–313

    Article  Google Scholar 

  15. Golenko-Ginsburg D (1988) On the distribution on activity times in PERT. J Operat Res Soc 39:767–771

    Google Scholar 

  16. Golengo-Ginsberg D (1989) PERT assumptions revisited. Omega 17:393–396

    Article  Google Scholar 

  17. Grubbs F (1962) Attempts to validate certain PERT statistics or “Picking on PERT”. Operat Res 10:912–915

    Article  Google Scholar 

  18. Hartley, HO, Northam AW ((1966)) A statistical theory for PERT critical analysis. Manag Sci 12(10):B-469–B-481

    Article  Google Scholar 

  19. Jia W, Ling B, Chau KW, Heutte L (2008) Palmprint identification using restricted fusion. Appl Math Comput 205(2):927–934

    Article  MathSciNet  MATH  Google Scholar 

  20. Kamburowski J (1983) Fuzzy activity duration times in critical path analyses. International symposium on project management, New Delhi, pp 194–199

    Google Scholar 

  21. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  22. Kotiah TCT, Wallace ND (1973) Another look at the PERT assumptions. Manag Sci 20:44–49

    Article  MATH  Google Scholar 

  23. Kundu Malay K, Chowdhury M, Banerjee M (2011) Interactive image retrieval using M-band wavelet, earth mover’s distance and fuzzy relevance feedback. Int J Mach Learn Cyber. doi:10.1007/s13042-011-0062-8

  24. Lin JY, Cheng CT, Chau KW (2006) Using support vector machines for long-term discharge prediction. Hydrol Sci 51(4):599–612

    Article  Google Scholar 

  25. Lootsma FA (1989) Stochastic and fuzzy PERT. Eur J Oper Res 43:174–183

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu M (2002) Enhancing project evaluation and review technique simulation through artificial neural network-based input modeling. J Constr Eng Manag 128(5):438–445

    Article  Google Scholar 

  27. MacCahon CS (1993) Using PERT as an approximation of fuzzy project network analysis. IEEE Trans Eng Manag 40:146–153

    Article  Google Scholar 

  28. MacCrimmon K, Rayvec C (1964) An analytical study of PERT assumptions. Oper Res Int J 12:16–27

    Article  Google Scholar 

  29. Malcolm DD, Roseboom JS, Clarc CI, Fazar W (1959) Application of a technique for research and development program evaluation. Oper Res 7:646–669

    Article  MATH  Google Scholar 

  30. Moder JJ, Rodgers EG (1968) Judgement estimates of the moments of PERT type distributions. Manag Sci 15(2):B-76–B-83

    Article  Google Scholar 

  31. Moder JJ, Philips CR, Davis EW (1983) Project management with CPM, PERT and precedence diagramming, 3rd edn. Van Norstrand Reinohold, New York

    Google Scholar 

  32. Moitra S (1990) Skewness and the beta distribution. J Operat Res Soc 41:953–961

    Google Scholar 

  33. Mon DL, Cheng CH, Lu HC (1995) Application of fuzzy distributions on project management. Fuzzy Sets Syst 73:1069–1073

    Article  MathSciNet  Google Scholar 

  34. Muttil N, Chau KW (2007) Machine learning paradigms for selecting ecologically significant input variables. Eng Appl Artif Intell 20(6):735–744

    Article  Google Scholar 

  35. Nasution SH (1993) Fuzzy decisions in critical path method. Second IEEE Conf Fuzzy Sys 2:1069–1073

    Google Scholar 

  36. Nasution SH (1994) Fuzzy critical path method. IEEE Trans Sys Man Cybern 24:48–57

    Article  Google Scholar 

  37. Parks WH, Ramsing, KD (1969) The use of the compound Poisson in PERT. Manag Sci 15(8):B-397–B-402

    Article  Google Scholar 

  38. Project Management Institute (2003) A guide to the project management body of knowledge, 3rd edn, Project Management Institute

  39. Ringer LJ (1969) Numerical operators for statistical PERT critical path analysis. Manag Sci 16(2):B-196–B-143

    Article  Google Scholar 

  40. Rommerlmanger H (1994) Network analysis and information flow in fuzzy environment. Fuzzy Sets Syst 67:119–128

    Article  Google Scholar 

  41. Sakawa M, Katagiri H, Matsui T (2011) Fuzzy random bilevel linear programming through expectation optimization using possibility and necessity. Int J Mach Learn Cyber. doi:10.1007/s13042-011-0055-7

  42. Shipley MF, De Korvin A, Omer K (1997) BIFPET methodology versus PERT in project management: fuzzy probability instead of the beta distribution. J Eng Tech Manag 49:49–65

    Article  Google Scholar 

  43. Slyeptysov AI, Tyshchuk TA (1997) Fuzzy critical path method for project network planning and control. Cybern Sys 3:158–170

    Google Scholar 

  44. Soong T (2004) Fundamentals of probability and statistics for engineers. Wiley, West Sussex

    MATH  Google Scholar 

  45. Shuming Wang, Junzo Watada (2012) Capacitated two-stage facility location problem with fuzzy costs and demands. Int J Mach Learn Cyber. doi:10.1007/s13042-012-0073-0

    Google Scholar 

  46. Wayne D, Cottrell PE (1999) Simplified program evaluation and review technique (PERT). J Constr Eng Manag 125(1):16–22

    Article  Google Scholar 

  47. Xie JX, Cheng CT, Chau KW, Pei YZ (2006) A hybrid adaptive time-delay neural network model for multi-step-ahead prediction of sunspot activity. Int J Environ Pollut 28(3–4):364–381

    Article  Google Scholar 

  48. Yao JS, Lin FT (2000) Fuzzy critical path method based on signed distance ranking of fuzzy numbers. IEEE Trans Syst Man Cybern 20:76–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos A. Chrysafis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrysafis, K.A., Panagiotakopoulos, D. & Papadopoulos, B.K. Hybrid (fuzzy-stochastic) modelling in construction operations management. Int. J. Mach. Learn. & Cyber. 4, 339–346 (2013). https://doi.org/10.1007/s13042-012-0093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-012-0093-9

Keywords

Navigation