Skip to main content
Log in

Difference in Clinical Phenotype, Mutation Position, and Structural Change of RNF213 Rare Variants Between Pediatric and Adult Japanese Patients with Moyamoya Disease

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

It is unclear how rare RNF213 variants, other than the p.R4810K founder variant, affect the clinical phenotype or the function of RNF213 in moyamoya disease (MMD). This study included 151 Japanese patients with MMD. After performing targeted resequencing for all coding exons in RNF213, we investigated the clinical phenotype and statistically analyzed the genotype–phenotype correlation. We mapped RNF213 variants on a three-dimensional (3D) model of human RNF213 and analyzed the structural changes due to variants. The RNF213 p.R4810K homozygous variant, p.R4810K heterozygous variant, and wild type were detected in 10 (6.6%), 111 (73.5%), and 30 (19.9%) MMD patients, respectively. In addition, 15 rare variants were detected in 16 (10.6%) patients. In addition to the influence of the p.R4810K homozygous variant, the frequency of cerebral infarction at disease onset was higher in pediatric patients with other rare variants (3/6, 50.0%, P = 0.006) than in those with only the p.R4810K heterozygous variant or with no variants (2/51, 3.9%). Furthermore, on 3D modelling of RNF213, the majority of rare variants found in pediatric patients were located in the E3 module and associated with salt bridge loss, contrary to the results for adult patients. The clinical phenotype of rare RNF213 variants, mapped mutation position, and their predicted structural change differed between pediatric and adult patients with MMD. Rare RNF213 variants, in addition to the founder p.R4810K homozygous variant, can influence MMD clinical phenotypes or structural change which may contribute to the destabilization of RNF213.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Suzuki J, Takaku A. Cerebrovascular, “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20:288–99.

    Article  CAS  PubMed  Google Scholar 

  2. Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–37.

    Article  CAS  PubMed  Google Scholar 

  3. Kuroda S, Houkin K. Moyamoya disease: current concepts and future perspectives. Lancet Neurol. 2008;7:1056–66.

    Article  PubMed  Google Scholar 

  4. Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, Hashikata H, Matsuura N, Yamazaki S, Toyoda A, Kikuta K, Takagi Y, Harada KH, Fujiyama A, Herzig R, Krischek B, Zou L, Kim JE, Kitakaze M, Miyamoto S, Nagata K, Hashimoto N, Koizumi A. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS ONE. 2011;6:e22542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, Kanno J, Niihori T, Ono M, Ishii N, Owada Y, Fujimura M, Mashimo Y, Suzuki Y, Hata A, Tsuchiya S, Tominaga T, Matsubara Y, Kure S. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet. 2011;56:34–40.

    Article  CAS  PubMed  Google Scholar 

  6. Nomura S, Yamaguchi K, Akagawa H, Kawashima A, Moteki Y, Ishikawa T, Aihara Y, Saito T, Okada Y, Kawamata T. Genotype-phenotype correlation in long-term cohort of Japanese patients with moyamoya disease. Cerebrovasc Dis. 2019;47:105–11.

    Article  CAS  PubMed  Google Scholar 

  7. Kim EH, Yum MS, Ra YS, Park JB, Ahn JS, Kim GH, Goo HW, Ko TS, Yoo HW. Importance of RNF213 polymorphism on clinical features and long-term outcome in moyamoya disease. J Neurosurg. 2016;124:1221–7.

    Article  CAS  PubMed  Google Scholar 

  8. Miyatake S, Miyake N, Touho H, Nishimura-Tadaki A, Kondo Y, Okada I, Tsurusaki Y, Doi H, Sakai H, Saitsu H, Shimojima K, Yamamoto T, Higurashi M, Kawahara N, Kawauchi H, Nagasaka K, Okamoto N, Mori T, Koyano S, Kuroiwa Y, Taguri M, Morita S, Matsubara Y, Kure S, Matsumoto N. Homozygous c.14576G>A variant of RNF213 predicts early-onset and severe form of moyamoya disease. Neurology. 2012;78:803–10.

    Article  CAS  PubMed  Google Scholar 

  9. Moteki Y, Onda H, Kasuya H, Yoneyama T, Okada Y, Hirota K, Mukawa M, Nariai T, Mitani S, Akagawa H. Systematic validation of RNF213 coding variants in Japanese patients with moyamoya disease. J Am Heart Assoc. 2015;4:e001862.

  10. Cecchi AC, Guo D, Ren Z, Flynn K, Santos-Cortez RL, Leal SM, Wang GT, Regalado ES, Steinberg GK, Shendure J, Bamshad MJ, University of Washington Center for Mendelian G, Grotta JC, Nickerson DA, Pannu H, Milewicz DM. RNF213 rare variants in an ethnically diverse population with Moyamoya disease. Stroke. 2014;45:3200–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guey S, Kraemer M, Herve D, Ludwig T, Kossorotoff M, Bergametti F, Schwitalla JC, Choi S, Broseus L, Callebaut I, Genin E, Tournier-Lasserve E, consortium F. Rare RNF213 variants in the C-terminal region encompassing the RING-finger domain are associated with moyamoya angiopathy in Caucasians. Eur J Hum Genet. 2017;25:995–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kobayashi H, Brozman M, Kyselova K, Viszlayova D, Morimoto T, Roubec M, Skoloudik D, Petrovicova A, Juskanic D, Strauss J, Halaj M, Kurray P, Hranai M, Harada KH, Inoue S, Yoshida Y, Habu T, Herzig R, Youssefian S, Koizumi A. RNF213 rare variants in Slovakian and Czech moyamoya disease patients. PLoS ONE. 2016;11:e0164759.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nomura S, Kawashima A, Akagawa H, Kawamata T. Letter to the Editor. Influence of rare RNF213 variants other than p.R4810K on the clinical outcomes of moyamoya disease. J Neurosurg. 2018;129:563–5.

  14. Hara S, Mukawa M, Akagawa H, Thamamongood T, Inaji M, Tanaka Y, Maehara T, Kasuya H, Nariai T. Absence of the RNF213 p.R4810K variant may indicate a severe form of pediatric moyamoya disease in Japanese patients. J Neurosurg Pediatr. 2022;29:48–56.

    Article  PubMed  Google Scholar 

  15. Pinard A, Fiander MDJ, Cecchi AC, Rideout AL, Azouz M, Fraser SM, McNeely PD, Walling S, Novara SC, Hurst ACE, Guo D, Parkash S, Bamshad MJ, Nickerson DA, Vandersteen AM, Milewicz DM. Association of de novo RNF213 variants with childhood onset moyamoya disease and diffuse occlusive vasculopathy. Neurology. 2021;96:e1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santoro C, Mirone G, Zanobio M, Ranucci G, D'Amico A, Cicala D, Iascone M, Bernardo P, Piccolo V, Ronchi A, Limongelli G, Carotenuto M, Nigro V, Cinalli G, Piluso G. Mystery(n) phenotypic presentation in Europeans: report of three further novel missense RNF213 variants leading to severe syndromic forms of moyamoya angiopathy and literature review. Int J Mol Sci. 2022;23:8952.

  17. Research Committee on the P, Treatment of Spontaneous Occlusion of the Circle of W, Health Labour Sciences Research Grant for Research on Measures for Infractable D. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir (Tokyo). 2012;52:245–66.

  18. Nomura S, Akagawa H, Yamaguchi K, Ishikawa T, Kawashima A, Kasuya H, Mukawa M, Nariai T, Maehara T, Okada Y, Kawamata T. Rare and low-frequency variants in RNF213 confer susceptibility to moyamoya syndrome associated with hyperthyroidism. World Neurosurg. 2019;127:e460–6.

    Article  PubMed  Google Scholar 

  19. Akagawa H, Mukawa M, Nariai T, Nomura S, Aihara Y, Onda H, Yoneyama T, Kudo T, Sumita K, Maehara T, Kawamata T, Kasuya H. Novel and recurrent RNF213 variants in Japanese pediatric patients with moyamoya disease. Hum Genome Var. 2018;5:17060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome AC. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Higasa K, Miyake N, Yoshimura J, Okamura K, Niihori T, Saitsu H, Doi K, Shimizu M, Nakabayashi K, Aoki Y, Tsurusaki Y, Morishita S, Kawaguchi T, Migita O, Nakayama K, Nakashima M, Mitsui J, Narahara M, Hayashi K, Funayama R, Yamaguchi D, Ishiura H, Ko WY, Hata K, Nagashima T, Yamada R, Matsubara Y, Umezawa A, Tsuji S, Matsumoto N, Matsuda F. Human genetic variation database, a reference database of genetic variations in the Japanese population. J Hum Genet. 2016;61:547–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Houkin K, Nakayama N, Kuroda S, Nonaka T, Shonai T, Yoshimoto T. Novel magnetic resonance angiography stage grading for moyamoya disease. Cerebrovasc Dis. 2005;20:347–54.

    Article  PubMed  Google Scholar 

  24. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahel J, Lehner A, Vogel A, Schleiffer A, Meinhart A, Haselbach D, Clausen T. Moyamoya disease factor RNF213 is a giant E3 ligase with a dynein-like core and a distinct ubiquitin-transfer mechanism. Elife. 2020;9:e56185.

  26. Mertens R, Graupera M, Gerhardt H, Bersano A, Tournier-Lasserve E, Mensah MA, Mundlos S, Vajkoczy P. The genetic basis of moyamoya disease. Transl Stroke Res. 2022;13:25–45.

    Article  CAS  PubMed  Google Scholar 

  27. Fujimura M, Sonobe S, Nishijima Y, Niizuma K, Sakata H, Kure S, Tominaga T. Genetics and biomarkers of moyamoya disease: significance of RNF213 as a susceptibility gene. J Stroke. 2014;16:65–72.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miyawaki S, Imai H, Shimizu M, Yagi S, Ono H, Mukasa A, Nakatomi H, Shimizu T, Saito N. Genetic variant RNF213 c.14576G>A in various phenotypes of intracranial major artery stenosis/occlusion. Stroke. 2013;44:2894–7.

    Article  CAS  PubMed  Google Scholar 

  29. Nomura S, Akagawa H, Yamaguchi K, Kawashima A, Kawamata T. Surgical options and genetic screening of a patient with moyamoya disease harboring the RNF213 p.R4180 K homozygous variant. J Child Neurol. 2020:35:621–2.

Download references

Acknowledgements

Altif Laboratories supported us for the analysis using three-dimensional human RNF213 modeling.

Funding

This work was supported by JSPS KAKENHI with grant numbers 19K18443 (to Shunsuke Nomura) and 16K10740 (to Hiroyuki Akagawa) and the Hiroto Yoshioka Memorial Medical Research Award (to Shunsuke Nomura).

Author information

Authors and Affiliations

Authors

Contributions

S.N., H.A., and T.K. designed the study. S.N, H.A, K.A, A.N., and F.M. analyzed the genetic data. S.N., K.Y., A.N., Y.A., T.I., Y.M., K.C., K.H., S.M., T.I., and Y.O. collected and analyzed the clinical data. S.N. and A.F. performed statistical analysis. S.N, H.A., K.A., S.V., H.A., and I.R. contributed to the interpretation and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shunsuke Nomura.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The main results of this work were presented at the World Internet Conference on Moyamoya Disease 2022.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 566 KB)

Supplementary file2 (TIF 667 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, S., Akagawa, H., Yamaguchi, K. et al. Difference in Clinical Phenotype, Mutation Position, and Structural Change of RNF213 Rare Variants Between Pediatric and Adult Japanese Patients with Moyamoya Disease. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01194-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01194-w

Keywords

Navigation