Skip to main content

Advertisement

Log in

Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8

  • Research
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3–7, 7–21, or 3–21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3–7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Xiong Y, Wakhloo A, Fisher M. Advances in acute ischemic stroke therapy. Circ Res. 2022;130(8):1230–51. https://doi.org/10.1161/CIRCRESAHA.121.319948.

    Article  CAS  PubMed  Google Scholar 

  2. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet (London, England). 2011;377(9778):1693–702. https://doi.org/10.1016/S0140-6736(11)60325-5.

    Article  PubMed  Google Scholar 

  3. Hugues N, Pellegrino C, Rivera C, Berton E, Pin-Barre C, Laurin J. Is high-intensity interval training suitable to promote neuroplasticity and cognitive functions after stroke? Int J Mol Sci. 2021;22(6):3003. https://doi.org/10.3390/ijms22063003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Liu H, Chen S, Zhang W, Chen Y, Yang Y. Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp Neurol. 2020;330:113325. https://doi.org/10.1016/j.expneurol.2020.113325.

    Article  CAS  PubMed  Google Scholar 

  5. Sun H, Li A, Hou T, Tao X, Chen M, Wu C, et al. Neurogenesis promoted by the cd200/cd200r signaling pathway following treadmill exercise enhances post-stroke functional recovery in rats. Brain Behav Immun. 2019;82:354–71. https://doi.org/10.1016/j.bbi.2019.09.005.

    Article  PubMed  Google Scholar 

  6. Al Shoyaib A, Alamri F, Biggers A, Karamyan S, Arumugam T, Ahsan F, et al. Delayed exercise-induced upregulation of angiogenic proteins and recovery of motor function after photothrombotic stroke in mice. Neuroscience. 2021;461:57–71. https://doi.org/10.1016/j.neuroscience.2021.02.023.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao H, Sapolsky R, Steinberg G. Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab. 2006;26(9):1114–21. https://doi.org/10.1038/sj.jcbfm.9600348.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao H. Hurdles to clear before clinical translation of ischemic postconditioning against stroke. Transl Stroke Res. 2013;4(1):63–70. https://doi.org/10.1007/s12975-012-0243-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan Y, Hu W, Nan F, Chen Z. Postconditioning-induced neuroprotection, mechanisms and applications in cerebral ischemia. Neurochem Int. 2017;107:43–56. https://doi.org/10.1016/j.neuint.2017.01.006.

    Article  CAS  PubMed  Google Scholar 

  10. Ripley A, Jeffers M, McDonald M, Montroy J, Dykes A, Fergusson D, et al. Neuroprotection by remote ischemic conditioning in rodent models of focal ischemia: a systematic review and meta-analysis. Transl Stroke Res. 2021;12(3):461–73. https://doi.org/10.1007/s12975-020-00882-1.

    Article  PubMed  Google Scholar 

  11. Li C, Ma W, Liu K, Yang J, Wang X, Wu Z, et al. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metab Brain Dis. 2021;36(1):53–65. https://doi.org/10.1007/s11011-020-00562-x.

    Article  CAS  PubMed  Google Scholar 

  12. Fan Y, Shen Z, He P, Jiang L, Hou W, Shen Y, et al. A novel neuroprotective strategy for ischemic stroke: transient mild acidosis treatment by co2 inhalation at reperfusion. J Cereb Blood Flow Metab. 2014;34(2):275–83. https://doi.org/10.1038/jcbfm.2013.193.

    Article  CAS  PubMed  Google Scholar 

  13. Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. Park2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017;13(3):473–85. https://doi.org/10.1080/15548627.2016.1274596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsai Y, Yang Y, Wang P, Wang R. Intermittent hypoxia after transient focal ischemia induces hippocampal neurogenesis and c-fos expression and reverses spatial memory deficits in rats. PloS One. 2011;6(8):e24001. https://doi.org/10.1371/journal.pone.0024001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsai Y, Yang Y, Sun S, Liang K, Wang R. Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J Cereb Blood Flow Metab. 2013;33(5):764–73. https://doi.org/10.1038/jcbfm.2013.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao Z, Hood R, Ong L, Pietrogrande G, Sanchez Bezanilla S, Warren K, et al. Exploring how low oxygen post conditioning improves stroke-induced cognitive impairment: a consideration of amyloid-beta loading and other mechanisms. Front Neurol. 2021;12:585189. https://doi.org/10.3389/fneur.2021.585189.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Doeppner T, Zechmeister B, Kaltwasser B, Jin F, Zheng X, Majid A, et al. Very delayed remote ischemic post-conditioning induces sustained neurological recovery by mechanisms involving enhanced angioneurogenesis and peripheral immunosuppression reversal. Front Cell Neurosci. 2018;12:383. https://doi.org/10.3389/fncel.2018.00383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okajima F. Regulation of inflammation by extracellular acidification and proton-sensing gpcrs. Cell Signal. 2013;25(11):2263–71. https://doi.org/10.1016/j.cellsig.2013.07.022.

    Article  CAS  PubMed  Google Scholar 

  19. Choi J, Lee S, Choi Y. Identification of a putative g protein-coupled receptor induced during activation-induced apoptosis of t cells. Cell Immunol. 1996;168(1):78–84. https://doi.org/10.1006/cimm.1996.0051.

    Article  CAS  PubMed  Google Scholar 

  20. McGuire J, Herman J, Ghosal S, Eaton K, Sallee F, Sah R. Acid-sensing by the t cell death-associated gene 8 (tdag8) receptor cloned from rat brain. Biochem Biophys Res Commun. 2009;386(3):420–5. https://doi.org/10.1016/j.bbrc.2009.05.133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mogi C, Tobo M, Tomura H, Murata N, He X, Sato K, et al. Involvement of proton-sensing tdag8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages. J Immunol. 2009;182(5):3243–51. https://doi.org/10.4049/jimmunol.0803466.

    Article  CAS  PubMed  Google Scholar 

  22. Onozawa Y, Fujita Y, Kuwabara H, Nagasaki M, Komai T, Oda T. Activation of t cell death-associated gene 8 regulates the cytokine production of t cells and macrophages in vitro. Eur J Pharmacol. 2012;683(1-3):325–31. https://doi.org/10.1016/j.ejphar.2012.03.007.

    Article  CAS  PubMed  Google Scholar 

  23. Jin Y, Sato K, Tobo A, Mogi C, Tobo M, Murata N, et al. Inhibition of interleukin-1β production by extracellular acidification through the tdag8/camp pathway in mouse microglia. J Neurochem. 2014;129(4):683–95. https://doi.org/10.1111/jnc.12661.

    Article  CAS  PubMed  Google Scholar 

  24. Ma X, Hang L, Shao D, Shu W, Hu X, Luo H. Tdag8 activation attenuates cerebral ischaemia-reperfusion injury via akt signalling in rats. Exp Neurol. 2017;293:115–23. https://doi.org/10.1016/j.expneurol.2017.03.023.

    Article  CAS  PubMed  Google Scholar 

  25. Sato K, Tobo A, Mogi C, Tobo M, Yamane N, Tosaka M, et al. The protective role of proton-sensing tdag8 in the brain injury in a mouse ischemia reperfusion model. Sci Rep. 2020;10(1):17193. https://doi.org/10.1038/s41598-020-74372-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin Y, Dong J, Tang Y, Ni H, Zhang Y, Su P, et al. Opening a new time window for treatment of stroke by targeting hdac2. J Neurosci. 2017;37(28):6712–28. https://doi.org/10.1523/JNEUROSCI.0341-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pietrogrande G, Zalewska K, Zhao Z, Johnson S, Nilsson M, Walker F. Low oxygen post conditioning as an efficient non-pharmacological strategy to promote motor function after stroke. Transl Stroke Res. 2019;10(4):402–12. https://doi.org/10.1007/s12975-018-0656-5.

    Article  CAS  PubMed  Google Scholar 

  28. Fan Y, Wang Y, Guo J, Wu M, Zhang M, Niu B, et al. Delayed metformin treatment improves functional recovery following traumatic brain injury via central ampk-dependent brain tissue repair. Brain Res Bull. 2020;164:146–56. https://doi.org/10.1016/j.brainresbull.2020.08.021.

    Article  CAS  PubMed  Google Scholar 

  29. McDonald M, Dykes A, Jeffers M, Carter A, Nevins R, Ripley A, et al. Remote ischemic conditioning and stroke recovery. Neurorehabil Neural Repair. 2021;35(6):545–9. https://doi.org/10.1177/15459683211011224.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, et al. Delayed hypoxic postconditioning protects against cerebral ischemia in the mouse. Stroke. 2009;40(10):3349–55. https://doi.org/10.1161/STROKEAHA.109.557314.

    Article  PubMed  Google Scholar 

  31. Yang X, Shi X, Ju J, Zhang W, Liu Y, Li X, et al. 5% CO2 inhalation suppresses hyperventilation-induced absence seizures in children. Epilepsy Res. 2014;108(2):345–8. https://doi.org/10.1016/j.eplepsyres.2013.11.012.

    Article  CAS  PubMed  Google Scholar 

  32. Papassin J, Heck O, Condamine E, Pietras J, Detante O, Krainik A. Impaired cerebrovascular reactivity is associated with recurrent stroke in patients with severe intracranial arterial stenosis: A CO2 bold fmri study. J Neuroradiol. 2021;48(5):339–45. https://doi.org/10.1016/j.neurad.2020.04.005.

    Article  PubMed  Google Scholar 

  33. Wang T, Zhou G, He M, Xu Y, Rusyniak W, Xu Y, et al. Gpr68 is a neuroprotective proton receptor in brain ischemia. Stroke. 2020;51(12):3690–700. https://doi.org/10.1161/STROKEAHA.120.031479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu Y, Casey G. Identification of human ogr1, a novel g protein-coupled receptor that maps to chromosome 14. Genomics. 1996;35(2):397–402. https://doi.org/10.1006/geno.1996.0377.

    Article  CAS  PubMed  Google Scholar 

  35. Wenzel J, Hansen C, Bettoni C, Vogt M, Lembrich B, Natsagdorj R, et al. Impaired endothelium-mediated cerebrovascular reactivity promotes anxiety and respiration disorders in mice. Proc Natl Acad Sci U S A. 2020;117(3):1753–61. https://doi.org/10.1073/pnas.1907467117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zha X, Xiong Z, Simon R. Ph and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab. 2022;42(8):1349–63. https://doi.org/10.1177/0271678X221089074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thompson S. Reactivity of cerebral blood flow to CO2 in patients with transient cerebral ischemic attacks. Stroke. 1971;2(3):273–8. https://doi.org/10.1161/01.str.2.3.273.

    Article  CAS  PubMed  Google Scholar 

  38. Caldwell H, Carr J, Minhas J, Swenson E, Ainslie P. Acid-base balance and cerebrovascular regulation. J Physiol. 2021;599(4):5337–59. https://doi.org/10.1113/JP281517.

    Article  CAS  PubMed  Google Scholar 

  39. Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke. 2012;43(10):2819–28. https://doi.org/10.1161/STROKEAHA.112.654228.

    Article  PubMed  Google Scholar 

  40. Benowitz L, Routtenberg A. Gap-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 1997;20(2):84–91. https://doi.org/10.1016/s0166-2236(96)10072-2.

    Article  CAS  PubMed  Google Scholar 

  41. Allegra Mascaro A, Cesare P, Sacconi L, Grasselli G, Mandolesi G, Maco B, et al. In vivo single branch axotomy induces gap-43-dependent sprouting and synaptic remodeling in cerebellar cortex. Proc Natl Acad Sci U S A. 2013;110(26):10824–9. https://doi.org/10.1073/pnas.1219256110.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Masliah E, Fagan A, Terry R, DeTeresa R, Mallory M, Gage F. Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with gap-43 in the dentate gyrus of the adult rat. Exp Neurol. 1991;113(2):131–42. https://doi.org/10.1016/0014-4886(91)90169-d.

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Wu Y, Zhang Q, Yu K, Wang Y. An enriched environment promotes synaptic plasticity and cognitive recovery after permanent middle cerebral artery occlusion in mice. Neural Regen Res. 2019;14(3):462–9. https://doi.org/10.4103/1673-5374.245470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen L, Li Y, Gao Q, Savant-Bhonsale S, Chopp M. Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia. 2008;56(16):1747–54. https://doi.org/10.1002/glia.20722.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shin J, Lim S, Jeong S, Kang J, Park E. Noggin improves ischemic brain tissue repair and promotes alternative activation of microglia in mice. Brain Behav Immun. 2014;40:143–54. https://doi.org/10.1016/j.bbi.2014.03.013.

    Article  CAS  PubMed  Google Scholar 

  46. Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain. Cold Spring Harb Perspect Biol. 2015;7(11):a019034. https://doi.org/10.1101/cshperspect.a019034.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Huang L, Zhang L. Neural stem cell therapies and hypoxic-ischemic brain injury. Prog Neurobiol. 2019;173:1–17. https://doi.org/10.1016/j.pneurobio.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  48. Hu X, Li P, Guo Y, Wang H, Leak R, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063–70. https://doi.org/10.1161/STROKEAHA.112.659656.

    Article  CAS  PubMed  Google Scholar 

  49. Perego C, Fumagalli S, De Simoni M. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011;8:174. https://doi.org/10.1186/1742-2094-8-174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raffaele S, Gelosa P, Bonfanti E, Lombardi M, Castiglioni L, Cimino M, et al. Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis. Mol Ther. 2021;29(4):1439–58. https://doi.org/10.1016/j.ymthe.2020.12.009.

    Article  CAS  PubMed  Google Scholar 

  51. Lian L, Zhang Y, Liu L, Yang L, Cai Y, Zhang J, et al. Neuroinflammation in ischemic stroke: focus on microrna-mediated polarization of microglia. Front Mol Neurosci. 2020;13:612439. https://doi.org/10.3389/fnmol.2020.612439.

    Article  CAS  PubMed  Google Scholar 

  52. Rossi D, Brady J, Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci. 2007;10(11):1377–86. https://doi.org/10.1038/nn2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zamanian J, Xu L, Foo L, Nouri N, Zhou L, Giffard R, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391–410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Chopp M, Zhang Z, Zhang R. Expression of glial fibrillary acidic protein in areas of focal cerebral ischemia accompanies neuronal expression of 72-kda heat shock protein. J Neurol Sci. 1995;128(2):134–42. https://doi.org/10.1016/0022-510x(94)00228-g.

    Article  CAS  PubMed  Google Scholar 

  55. Liao R, Jiang L, Wang R, Zhao H, Chen Y, Li Y, et al. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci Rep. 2015;5:15356. https://doi.org/10.1038/srep15356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yiu G, He Z. Glial inhibition of cns axon regeneration. Nat Rev Neurosci. 2006;7(8):617–27. https://doi.org/10.1038/nrn1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vollmer L, Ghosal S, McGuire J, Ahlbrand R, Li K, Santin J, et al. Microglial acid sensing regulates carbon dioxide-evoked fear. Biol Psychiatry. 2016;80(7):541–51. https://doi.org/10.1016/j.biopsych.2016.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bortell N, Basova L, Semenova S, Fox H, Ravasi T, Marcondes M. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro. J Neuroinflammation. 2017;14(1):49. https://doi.org/10.1186/s12974-017-0825-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was sponsored by the National Natural Science Foundation of China (81872854, 81202520), the Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University, KLCP2019), and the Fund for Shanxi “1331 Project” Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Yan-Ying Fan, Ming-Sheng Zhang; methodology: Yu Li, Xiao-Ying Tian, Ying-Jing Wang, Bao-Lu Guo, Jing Huo, Ru Chen, Hui-Feng Zhang; data curation: Yan-Ying Fan, Yan Li, Cai-Hong Yang; formal analysis and investigation: Yan-Ying Fan, Yan Li, Cai-Hong Yang; writing—original draft preparation: Yan-Ying Fan; writing—review and editing: Bao-Long Niu and Ming-Sheng Zhang; funding acquisition: Yan-Ying Fan.

Corresponding authors

Correspondence to Yan-Ying Fan, Bao-Long Niu or Ming-Sheng Zhang.

Ethics declarations

Ethics Approval

All procedures on animals were approved by the Institutional Animal Care and Use Committee at Shanxi Medical University and conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, YY., Li, Y., Tian, XY. et al. Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8. Transl. Stroke Res. (2023). https://doi.org/10.1007/s12975-023-01143-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12975-023-01143-7

Keywords

Navigation