Skip to main content
Log in

Inhibition of Dectin-1 Ameliorates Neuroinflammation by Regulating Microglia/Macrophage Phenotype After Intracerebral Hemorrhage in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

An Author Correction to this article was published on 03 July 2021

This article has been updated

Abstract

Polarization of microglia/macrophages toward the pro-inflammatory phenotype is an important contributor to neuroinflammation after intracerebral hemorrhage (ICH). Dectin-1 is a pattern recognition receptor that has been reported to play a key role in regulating neuroinflammation in ischemic stroke and spinal cord injury. However, the role and mechanism of action of Dectin-1 after ICH remains unclear. In this study, we investigated the effect of Dectin-1 on modulating the microglia/macrophage phenotype and neuroinflammation and the possible underlying mechanism after ICH. We found that Dectin-1 expression increased after ICH, and was mainly localized in microglia/macrophages. Neutrophil infiltration and microglia/macrophage polarization toward the pro-inflammatory phenotype increased after ICH. However, treatment with a Dectin-1 inhibitor reversed these phenomena and induced a shift the anti-inflammatory phenotype in microglia/macrophages; this resulted in alleviation of neurological dysfunction and facilitated hematoma clearance after ICH. We also found that Dectin-1 crosstalks with the downstream pro-inflammatory pathway, Card9/NF-κB, by activating spleen tyrosine kinase (Syk) both in vivo and in vitro. In conclusion, our data suggest that Dectin-1 is involved in the microglia/macrophage polarization and functional recovery after ICH, and that this mechanism, at least in part, may contribute to the involvement of the Syk/Card9/NF-kB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Che-Feng Chang Brittany A. Roslyn A. Taylor,Stephen C. Renfroe Michael Arthur F. Steinschneider,David A. Hafler J. Michael T. Mullen. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest 2017;1(127):280-292.

  2. Huimin Zhu,Zhiqiang Wang,Jixu Yu,Xiuli Yang,Feng He,Zhenchuan Liu,et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol. 2019; (178):101610.

  3. Duan X, Wen Z, Shen H, Shen M, Chen G. Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxidative Med Cell Longev. 2016;2016:1203285.

    Article  CAS  Google Scholar 

  4. Zhao X, Sun G, Zhang H, Ting S-M, Shen S, Gonzales N, et al. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res. 2014;5(5):554–61.

    Article  PubMed  Google Scholar 

  5. Andrew Wilkinson D, Keep RF, Hua Y, Xi G. Hematoma clearance as a therapeutic target in intracerebral hemorrhage: from macro to micro. J Cereb Blood Flow Metab. 2017;4(38):741–5.

    Google Scholar 

  6. Sattur MG, Spiotta AM. Commentary: Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomized, controlled, open-label, blinded endpoint phase 3 trial. Neurosurgery. 2020;5(86):E444–6.

    Article  Google Scholar 

  7. Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;7(13):420–33.

    Article  CAS  Google Scholar 

  8. Hu X, Li P, Yanling G, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury. Stroke. 2012;43:3063–70.

    Article  CAS  PubMed  Google Scholar 

  9. Veronique E. Miron,Amanda Boyd,Jing-Wei Zhao,Tracy J. Yuen,Julia M. Ruckh,Jennifer L. Shadrach,et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013;9(16):1211-1218.

  10. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;12(33):1864–74.

    Article  CAS  Google Scholar 

  11. Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol. 2017;3(54):1874–86.

    Article  CAS  Google Scholar 

  12. Lan X, Han X, Li Q, Li Q, Gao Y, Cheng T, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain, Behavior, and. Immunity. 2017;61:326–39.

    CAS  Google Scholar 

  13. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;2(229):176–85.

    Article  CAS  Google Scholar 

  14. Chang C-F, Wan J, Li Q, Renfroe SC, Heller NM, Wang J. Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiol Dis. 2017;103:54–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Castoldi A, Andrade-Oliveira V, Aguiar CF, Amano MT, Lee J, Miyagi MT, et al. Dectin-1 activation exacerbates obesity and insulin resistance in the absence of MyD88. Cell Rep. 2017;11(19):2272–88.

    Article  CAS  Google Scholar 

  16. Drummond RA, Saijo S, Iwakura Y, Brown GD. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 2011;2(41):276–81.

    Article  CAS  Google Scholar 

  17. Shiho Chiba,Hiroaki Ikushima,Hiroshi Ueki,Hideyuki Yanai,Yoshitaka Kimura,Sho Hangai,et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. Elife. 2014; (3):e4177.

  18. Fan Q, Tao R, Zhang H, Xie H, Lu L, Wang T, et al. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation. 2019;5(139):663–78.

    Article  CAS  Google Scholar 

  19. Ye X-C, Hao Q, Ma W-J, Zhao Q-C, Wang W-W, Yin H-H, et al. Dectin-1/Syk signaling triggers neuroinflammation after ischemic stroke in mice. J Neuroinflammation. 2020;1(17):17.

    Article  CAS  Google Scholar 

  20. Matthew Wagener,J. Claire Hoving,Hlumani Ndlovu,Mohlopheni J. Marakalala. Dectin-1-Syk-CARD9 signaling pathway in TB immunity. Front Immunol. 2018;13(9):288.

  21. Hadebe S, Brombacher F, Brown GD. C-type lectin receptors in asthma. Front Immunol. 2018;11(9):733.

    Article  CAS  Google Scholar 

  22. Xu P, Zhang X, Liu Q, Xie Y, Shi X, Chen J, et al. Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis. 2019;10(8):555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yang M, Shao J-H, Miao Y-J, Cui W, Qi Y-F, Han J-H, et al. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization. Cell Death Differ. 2014;8(21):1290–302.

    Article  CAS  Google Scholar 

  24. Sansing LH, Kasner SE, McCullough L, Agarwal P, Welsh FA, Kariko K. Autologous blood injection to model spontaneous intracerebral hemorrhage in mice. J Vis Exp. 2011;54:e2618.

    Google Scholar 

  25. Chang CF, Goods BA, Askenase MH, Hammond MD, Renfroe SC, Steinschneider AF, et al. Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J Clin Invest. 2018;2(128):607–24.

    Google Scholar 

  26. Luigi Donato,Concetta Scimone,Simona Alibrandi,Carmela Rinaldi,Antonina Sidoti,Rosalia D Angelo. Transcriptome analyses of lncRNAs in A2E-stressed retinal epithelial cells unveil advanced links between metabolic impairments related to oxidative stress and retinitis pigmentosa. Antioxidants. 2020;4(9):318.

  27. L. Donato,C. Scimone,S. Alibrandi,G. Nicocia,C. Rinaldi,A. Sidoti,et al. Discovery of GLO1 new related genes and pathways by RNA-Seq on A2E-stressed retinal epithelial cells could improve knowledge on retinitis pigmentosa. Antioxidants (Basel). 2020;5(9):

  28. Luigi Donato,Rosalia D Angelo,Simona Alibrandi,Carmela Rinaldi,Antonina Sidoti,Concetta Scimone. Effects of A2E-induced oxidative stress on retinal epithelial cells: new insights on differential gene response and retinal dystrophies. Antioxidants. 2020;4(9):307.

  29. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002;10(33):2478–84.

    Article  Google Scholar 

  30. Chang C-F, Cai L, Wang J. Translational intracerebral hemorrhage: a need for transparent descriptions of fresh tissue sampling and preclinical model quality. Transl Stroke Res. 2015;5(6):384–9.

    Article  CAS  Google Scholar 

  31. Zhao X, Wu T, Chang C-F, Wu H, Han X, Li Q, et al. Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice. Brain, Behavior, and. Immunity. 2015;46:293–310.

    CAS  Google Scholar 

  32. Garcia-Bonilla L, Racchumi G, Murphy M, Anrather J, Iadecola C. Endothelial CD36 contributes to postischemic brain injury by promoting neutrophil activation via CSF3. J Neurosci. 2015;44(35):14783–93.

    Article  CAS  Google Scholar 

  33. Posel C, Moller K, Boltze J, Wagner DC, Weise G. Isolation and flow cytometric analysis of immune cells from the ischemic mouse brain. J Vis Exp. 2016;108:e53658.

    Google Scholar 

  34. Lu J, Sun Z, Fang Y, Zheng J, Xu S, Xu W, et al. Melatonin suppresses microglial necroptosis by regulating deubiquitinating enzyme A20 after intracerebral hemorrhage. Front Immunol. 2019;10:1–16.

    Article  CAS  Google Scholar 

  35. Carmela Rinaldi,Placido Bramanti,Concetta Scimone,Luigi Donato,Concetta Alafaci,Rosalia D’Angelo,et al. Relevance of CCM gene polymorphisms for clinical management of sporadic cerebral cavernous malformations. J Neurol Sci. 2017;380):31-37.

  36. Concetta Scimone,Luigi Donato,Zoe Katsarou,Sevasti Bostantjopoulou,Rosalia D’Angelo,Antonina Sidoti. Two novel KRIT1 and CCM2 mutations in patients affected by cerebral cavernous malformations: new information on CCM2 penetrance. Front Neurol. 2018;9):

  37. Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014;388(8):1–13.

    Google Scholar 

  38. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;4(32):21–7.

    Article  CAS  Google Scholar 

  39. Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med. 2005;6(201):949–60.

    Article  CAS  Google Scholar 

  40. Gensel JC, Wang Y, Guan Z, Beckwith KA, Braun KJ, Wei P, et al. Toll-like receptors and Dectin-1, a C-type lectin receptor, trigger divergent functions in CNS macrophages. J Neurosci. 2015;27(35):9966–76.

    Article  CAS  Google Scholar 

  41. Zhuoran Yin,Divya D. Raj,Wandert Schaafsma,Roel A. van der Heijden,Susanne M. Kooistra,Aaffien C. Reijne,et al. Low-fat diet with caloric restriction reduces white matter microglia activation during aging. Front Mol Neurosci. 2018;65(11):

  42. Baldwin KT, Carbajal KS, Segal BM, Giger RJ. Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration. Proc Natl Acad Sci. 2015;8(112):2581–6.

    Article  CAS  Google Scholar 

  43. Lech M, Susanti HE, Römmele C, Gröbmayr R, Günthner R, Anders H-J. Quantitative expression of C-type lectin receptors in humans and mice. Int J Mol Sci. 2012;8(13):10113–31.

    Article  CAS  Google Scholar 

  44. Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J Stroke. 2020;1(22):29–46.

    Article  Google Scholar 

  45. Fangfang Zhou,Zheng Jiang,Binbin Yang,Zhiping Hu. Magnolol exhibits anti-inflammatory and neuroprotective effects in a rat model of intracerebral haemorrhage. Brain, Behavior, and Immunity. 2019; (77):161-67.

  46. Tao Li,Weilin Xu,Jinsong Ouyang,Xiaoyang Lu,Prativa Sherchan,Cameron Lenahan,et al. Orexin A alleviates neuroinflammation via OXR2/CaMKKβ/AMPK signaling pathway after ICH in mice. J Neuroinflamm. 2020;17(1):

  47. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;10(14):986–95.

    Article  CAS  Google Scholar 

  48. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012;2(37):249–63.

    Article  CAS  Google Scholar 

  49. Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6(6):407–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;3(122):787–95.

    Article  CAS  Google Scholar 

  51. Omer Nuri Pamuk,Peter H. Lapchak,Poonam Rani,Polly Pine,Jurandir J. Dalle Lucca,George C. Tsokos. Spleen tyrosine kinase inhibition prevents tissue damage after ischemia-reperfusion. Am J Physiol-Gastr L 2010;2(299):G391-G399.

  52. Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem. 2008;24(283):16693–701.

    Article  CAS  Google Scholar 

  53. Sancho D, Joffre OP, Keller AM, Rogers NC, Martínez D, Hernanz-Falcón P, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;7240(458):899–903.

    Article  CAS  Google Scholar 

  54. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;4(22):507–17.

    Article  CAS  Google Scholar 

  55. Attila Mócsai,Jürgen Ruland,Victor L. J. Tybulewicz. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010;6(10):387-402.

  56. Pires B, Silva R, Ferreira G, Abdelhay E. NF-kappaB: two sides of the same coin. Genes-Basel. 2018;1(9):24.

    Article  CAS  Google Scholar 

  57. Chaudhary A, Fresquez TM, Naranjo MJ. Tyrosine kinase Syk associates with toll-like receptor 4 and regulates signaling in human monocytic cells. Immunol Cell Biol. 2007;3(85):249–56.

    Article  CAS  Google Scholar 

  58. Ishizuka F, Shimazawa M, Inoue Y, Nakano Y, Ogishima H, Nakamura S, et al. Toll-like receptor 4 mediates retinal ischemia/reperfusion injury through nuclear factor-kappaB and spleen tyrosine kinase activation. Invest Ophthalmol Vis Sci. 2013;8(54):5807–16.

    Article  CAS  Google Scholar 

  59. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21:801–7.

    Article  CAS  PubMed  Google Scholar 

  60. Andaluz N, Zuccarello M, Wagner KR. Experimental animal models of intracerebral hemorrhage. Neurosurg Clin N Am. 2002;3(13):385–93.

    Article  Google Scholar 

  61. MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab. 2007;3(28):516–25.

    Google Scholar 

  62. Chang C-F, Massey J, Osherov A, Da Costa LHA, Sansing LH. Bexarotene enhances macrophage erythrophagocytosis and hematoma clearance in experimental intracerebral hemorrhage. Stroke. 2020;2(51):612–8.

    Article  CAS  Google Scholar 

  63. Nakamura T, Hua Y, Keep RF, Park J-W, Xi G, Hoff JT. Estrogen therapy for experimental intracerebral hemorrhage in rats. J Neurosurg. 2005;1(103):97–103.

    Article  Google Scholar 

  64. Nakamura T, Xi G, Hua Y, Schallert T, Hoff JT, Keep RF. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab. 2004;5(24):487–94.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R &D program of China (No. 2018YFC1312600 and No. 2018YFC1312603), National Nature Science Foundation of China (No. 81870910), the Key Research and Development Project of Zhejiang Province (No.2018C03011), and Project of Zhejiang Provincial Nature Science Foundation (No. LY18H090007).

Author information

Authors and Affiliations

Authors

Contributions

GC, FY, and LW conceived and designed the study. XJF, HHZ, JKZ, and GYZ performed the ICH model and PCR. HZ, JFZ, and CRX performed the western blots and immunostaining. YCP, YC, and HJC prepared the figures. YL and JRL analyzed data. HZ, GYZ, and XJF performed cell culture. XJF, HHZ, JKZ, and GYZ prepared the manuscript draft. GC, YF, and LW wrote the paper.

Corresponding authors

Correspondence to Feng Yan or Gao Chen.

Ethics declarations

Ethics Approval

All procedures were performed according to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were approved by the Institutional Ethics Committee of the Second Affiliated Hospital, Zhejiang University of Medicine.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: there was an error in Figure 1b.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Zeng, H., Zhao, J. et al. Inhibition of Dectin-1 Ameliorates Neuroinflammation by Regulating Microglia/Macrophage Phenotype After Intracerebral Hemorrhage in Mice. Transl. Stroke Res. 12, 1018–1034 (2021). https://doi.org/10.1007/s12975-021-00889-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-021-00889-2

Keywords

Navigation