Skip to main content
Log in

Disease of mRNA Regulation: Relevance for Ischemic Brain Injury

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

In this mini-review we give an overview of the role of mRNA-binding proteins and their associated messenger ribonucleoprotein complexes (mRNPs) in several disease states, and bring this information to bear on the pathophysiology of brain ischemia. One conclusion reached is that mRNPs may play a causal role in proteotoxicity instead of being merely passive targets. Ischemia therapies targeting mRNPs have advantages over targeting single pathways, but the behavior of mRNPs needs to be considered in the design of therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Knowles RB, Sabry JH, Martone ME, Deerinck TJ, Ellisman MH, Bassell GJ, et al. Translocation of RNA granules in living neurons. J Neurosci. 1996;16(24):7812–20.

    Article  PubMed  CAS  Google Scholar 

  2. Kedersha N, Anderson P. Regulation of translation by stress granules and processing bodies. Prog Mol Biol Transl Sci. 2009;90:155–85. https://doi.org/10.1016/S1877-1173(09)90004-7.

    Article  PubMed  CAS  Google Scholar 

  3. Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147(7):1431–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Kedersha N, Tisdale S, Hickman T, Anderson P. Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol. 2008;448:521–52. https://doi.org/10.1016/S0076-6879(08)02626-8.

    Article  PubMed  CAS  Google Scholar 

  5. Aulas A, Fay MM, Szaflarski W, Kedersha N, Anderson P, Ivanov P. Methods to classify cytoplasmic foci as mammalian stress granules. J Vis Exp. 2017;123 https://doi.org/10.3791/55656.

  6. Paz I, Kosti I, Ares M Jr, Cline M, Mandel-Gutfreund Y. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 2014;42(Web Server issue):W361–7. https://doi.org/10.1093/nar/gku406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Harvey R, Dezi V, Pizzinga M, Willis AE. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem Soc Trans. 2017;45(4):1007–14. https://doi.org/10.1042/BST20160364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Simone LE, Keene JD. Mechanisms coordinating ELAV/Hu mRNA regulons. Curr Opin Genet Dev. 2013;23(1):35–43. https://doi.org/10.1016/j.gde.2012.12.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sajjanar B, Deb R, Raina SK, Pawar S, Brahmane MP, Nirmale AV, et al. Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses. J Therm Biol. 2017;65:69–75. https://doi.org/10.1016/j.jtherbio.2017.02.006.

    Article  PubMed  CAS  Google Scholar 

  10. Bakheet T, Williams BR, Khabar KS. ARED 3.0: the large and diverse AU-rich transcriptome. Nucleic Acids Res. 2006;34(Database issue):D111–4. https://doi.org/10.1093/nar/gkj052.

    Article  PubMed  CAS  Google Scholar 

  11. Fan XC, Steitz JA. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 1998;17(12):3448–60. https://doi.org/10.1093/emboj/17.12.3448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mazan-Mamczarz K, Galban S, Lopez de Silanes I, Martindale JL, Atasoy U, Keene JD, et al. RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci U S A. 2003;100(14):8354–9. https://doi.org/10.1073/pnas.1432104100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gallouzi IE, Brennan CM, Steitz JA. Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. RNA. 2001;7(9):1348–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Antic D, Keene JD. Messenger ribonucleoprotein complexes containing human ELAV proteins: interactions with cytoskeleton and translational apparatus. J Cell Sci. 1998;111(Pt 2):183–97.

    PubMed  CAS  Google Scholar 

  15. Kedersha N, Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans. 2002;30(Pt 6):963–9. https://doi.org/10.1042/bst0300963.

  16. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell. 2004;15(12):5383–98. https://doi.org/10.1091/mbc.E04-08-0715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Anderson P, Kedersha N, Ivanov P. Stress granules, P-bodies and cancer. Biochim Biophys Acta. 2015;1849(7):861–70. https://doi.org/10.1016/j.bbagrm.2014.11.009.

    Article  PubMed  CAS  Google Scholar 

  18. Mahboubi H, Stochaj U. Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim Biophys Acta. 2017;1863(4):884–95. https://doi.org/10.1016/j.bbadis.2016.12.022.

    Article  PubMed  CAS  Google Scholar 

  19. DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. Wiley Interdiscip Rev RNA. 2017;8(4). doi:https://doi.org/10.1002/wrna.1415.

  20. Hossmann KA. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res. 1993;96:161–77.

    Article  PubMed  CAS  Google Scholar 

  21. Kayali F, Montie HL, Rafols JA, DeGracia DJ. Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules. Neuroscience. 2005;134(4):1223–45. https://doi.org/10.1016/j.neuroscience.2005.05.047.

    Article  PubMed  CAS  Google Scholar 

  22. Jamison JT, Kayali F, Rudolph J, Marshall M, Kimball SR, DeGracia DJ. Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion. Neuroscience. 2008;154(2):504–20. https://doi.org/10.1016/j.neuroscience.2008.03.057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. DeGracia DJ, Rudolph J, Roberts GG, Rafols JA, Wang J. Convergence of stress granules and protein aggregates in hippocampal cornu ammonis 1 at later reperfusion following global brain ischemia. Neuroscience. 2007;146(2):562–72. https://doi.org/10.1016/j.neuroscience.2007.01.050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hu BR, Martone ME, Jones YZ, Liu CL. Protein aggregation after transient cerebral ischemia. J Neurosci. 2000;20(9):3191–9.

    Article  PubMed  CAS  Google Scholar 

  25. Liu CL, Ge P, Zhang F, Hu BR. Co-translational protein aggregation after transient cerebral ischemia. Neuroscience. 2005;134(4):1273–84. https://doi.org/10.1016/j.neuroscience.2005.05.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ge P, Luo Y, Liu CL, Hu B. Protein aggregation and proteasome dysfunction after brain ischemia. Stroke. 2007;38(12):3230–6. https://doi.org/10.1161/STROKEAHA.107.487108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Truettner JS, Hu K, Liu CL, Dietrich WD, Hu B. Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res. 2009;1249:9–18. https://doi.org/10.1016/j.brainres.2008.10.032.

    Article  PubMed  CAS  Google Scholar 

  28. Ge P, Zhang F, Zhao J, Liu C, Sun L, Hu B. Protein degradation pathways after brain ischemia. Curr Drug Targets. 2012;13(2):159–65.

    Article  PubMed  CAS  Google Scholar 

  29. Ayuso MI, Martinez-Alonso E, Regidor I, Alcazar A. Stress granule induction after brain ischemia is independent of eukaryotic translation initiation factor (eIF) 2alpha phosphorylation and is correlated with a decrease in eIF4B and eIF4E proteins. J Biol Chem. 2016;291(53):27252–64. https://doi.org/10.1074/jbc.M116.738989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jin K, Li W, Nagayama T, He X, Sinor AD, Chang J, et al. Expression of the RNA-binding protein TIAR is increased in neurons after ischemic cerebral injury. J Neurosci Res. 2000;59(6):767–74. https://doi.org/10.1002/(SICI)1097-4547(20000315)59:6<767::AID-JNR9>3.0.CO;2-K.

    Article  PubMed  CAS  Google Scholar 

  31. Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, et al. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol. 2001;50(1):93–103.

    Article  PubMed  CAS  Google Scholar 

  32. Wang H, Tri Anggraini F, Chen X, DeGracia DJ. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab. 2016; https://doi.org/10.1177/0271678X16657572.

  33. Szymanski JJ, Wang H, Jamison JT, DeGracia DJ. HuR function and translational state analysis following global brain ischemia and reperfusion. Transl Stroke Res. 2013;4(6):589–603. https://doi.org/10.1007/s12975-013-0273-2.

    Article  PubMed  CAS  Google Scholar 

  34. Cuadrado A, Navarro-Yubero C, Furneaux H, Kinter J, Sonderegger P, Munoz A. HuD binds to three AU-rich sequences in the 3′-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein. Nucleic Acids Res. 2002;30(10):2202–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. DeGracia DJ. Acute and persistent protein synthesis inhibition following cerebral reperfusion. J Neurosci Res. 2004;77(6):771–6. https://doi.org/10.1002/jnr.20225.

    Article  PubMed  CAS  Google Scholar 

  36. Ash PE, Vanderweyde TE, Youmans KL, Apicco DJ, Wolozin B. Pathological stress granules in Alzheimer’s disease. Brain Res. 2014;1584:52–8. https://doi.org/10.1016/j.brainres.2014.05.052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wolozin B. Physiological protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. Discov Med. 2014;17(91):47–52.

    PubMed  PubMed Central  Google Scholar 

  38. Gal J, Kuang L, Barnett KR, Zhu BZ, Shissler SC, Korotkov KV, et al. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathol. 2016;132(4):563–76. https://doi.org/10.1007/s00401-016-1601-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PEA, Cook C, Lummertz da Rocha E, et al. Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016;15(7):1455–66. https://doi.org/10.1016/j.celrep.2016.04.045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vanderweyde T, Youmans K, Liu-Yesucevitz L, Wolozin B. Role of stress granules and RNA-binding proteins in neurodegeneration: a mini-review. Gerontology. 2013;59(6):524–33. https://doi.org/10.1159/000354170.

    Article  PubMed  CAS  Google Scholar 

  41. Cestra G, Rossi S, Di Salvio M, Cozzolino M. Control of mRNA translation in ALS Proteinopathy. Front Mol Neurosci. 2017;10:85. https://doi.org/10.3389/fnmol.2017.00085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. BR H, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, et al. Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab. 2001;21(7):865–75. https://doi.org/10.1097/00004647-200107000-00012.

    Article  Google Scholar 

  43. Petrov T, Underwood BD, Braun B, Alousi SS, Rafols JA. Upregulation of iNOS expression and phosphorylation of eIF-2alpha are paralleled by suppression of protein synthesis in rat hypothalamus in a closed head trauma model. J Neurotrauma. 2001;18(8):799–812. https://doi.org/10.1089/089771501316919166.

    Article  PubMed  CAS  Google Scholar 

  44. Chou A, Krukowski K, Jopson T, Zhu PJ, Costa-Mattioli M, Walter P, et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc Natl Acad Sci U S A. 2017;114(31):E6420–E6. https://doi.org/10.1073/pnas.1707661114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wiesner D, Tar L, Linkus B, Chandrasekar A, Olde Heuvel F, Dupuis L, et al. Reversible induction of TDP-43 granules in cortical neurons after traumatic injury. Exp Neurol. 2017;299(Pt A):15–25. https://doi.org/10.1016/j.expneurol.2017.09.011.

    Article  PubMed  CAS  Google Scholar 

  46. Kwan T, Floyd CL, Patel J, Mohaimany-Aponte A, King PH. Astrocytic expression of the RNA regulator HuR accentuates spinal cord injury in the acute phase. Neurosci Lett. 2017;651:140–5. https://doi.org/10.1016/j.neulet.2017.05.003.

    Article  PubMed  CAS  Google Scholar 

  47. Beiter T, Hoene M, Prenzler F, Mooren FC, Steinacker JM, Weigert C, et al. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc Immunol Rev. 2015;21:42–57.

    PubMed  Google Scholar 

  48. Grammatikakis I, Abdelmohsen K, Gorospe M. Posttranslational control of HuR function. Wiley Interdiscip Rev RNA. 2017;8(1). doi:https://doi.org/10.1002/wrna.1372.

  49. Shang J, Zhao Z. Emerging role of HuR in inflammatory response in kidney diseases. Acta Biochim Biophys Sin Shanghai. 2017;49(9):753–63. https://doi.org/10.1093/abbs/gmx071.

    Article  PubMed  Google Scholar 

  50. Kwan T, Floyd CL, Kim S, King PH. RNA binding protein human antigen R is translocated in astrocytes following spinal cord injury and promotes the inflammatory response. J Neurotrauma. 2017;34(6):1249–59. https://doi.org/10.1089/neu.2016.4757.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang H, Ding N, Guo J, Xia J, Ruan Y. Dysregulation of TTP and HuR plays an important role in cancers. Tumour Biol. 2016;37(11):14451–61. https://doi.org/10.1007/s13277-016-5397-z.

    Article  PubMed  CAS  Google Scholar 

  52. Fournier MJ, Gareau C, Mazroui R. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int. 2010;10:12. https://doi.org/10.1186/1475-2867-10-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Moeller BJ, Dewhirst MW. Raising the bar: how HIF-1 helps determine tumor radiosensitivity. Cell Cycle. 2004;3(9):1107–10.

    Article  PubMed  CAS  Google Scholar 

  54. Stoecklin G, Gross B, Ming XF, Moroni C. A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Oncogene. 2003;22(23):3554–61. https://doi.org/10.1038/sj.onc.1206418.

    Article  PubMed  CAS  Google Scholar 

  55. Irvine K, Stirling R, Hume D, Kennedy D. Rasputin, more promiscuous than ever: a review of G3BP. Int J Dev Biol. 2004;48(10):1065–77. https://doi.org/10.1387/ijdb.041893ki.

    Article  PubMed  CAS  Google Scholar 

  56. Sharp FR, Kinouchi H, Koistinaho J, Chan PH, Sagar SM. HSP70 heat shock gene regulation during ischemia. Stroke. 1993;24(12 Suppl):I72–5.

    PubMed  CAS  Google Scholar 

  57. VanGilder RL, Huber JD, Rosen CL, Barr TL. The transcriptome of cerebral ischemia. Brain Res Bull. 2012;88(4):313–9. https://doi.org/10.1016/j.brainresbull.2012.02.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lloyd RE. Translational control by viral proteinases. Virus Res. 2006;119(1):76–88. https://doi.org/10.1016/j.virusres.2005.10.016.

    Article  PubMed  CAS  Google Scholar 

  59. Yim HC, Williams BR. Protein kinase R and the inflammasome. J Interf Cytokine Res. 2014;34(6):447–54. https://doi.org/10.1089/jir.2014.0008.

    Article  CAS  Google Scholar 

  60. Dabo S, Meurs EF. dsRNA-dependent protein kinase PKR and its role in stress, signaling and HCV infection. Viruses. 2012;4(11):2598–635. https://doi.org/10.3390/v4112598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. McCormick C, Khaperskyy DA. Translation inhibition and stress granules in the antiviral immune response. Nat Rev Immunol. 2017;17(10):647–60. https://doi.org/10.1038/nri.2017.63.

    Article  PubMed  CAS  Google Scholar 

  62. Montero H, Trujillo-Alonso V. Stress granules in the viral replication cycle. Viruses. 2011;3(11):2328–38. https://doi.org/10.3390/v3112328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77. https://doi.org/10.1002/ana.20741.

    Article  PubMed  CAS  Google Scholar 

  64. Uversky VN. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol. 2017;44:18–30. https://doi.org/10.1016/j.sbi.2016.10.015.

    Article  PubMed  CAS  Google Scholar 

  65. Saarikangas J, Barral Y. Protein aggregation as a mechanism of adaptive cellular responses. Curr Genet. 2016;62(4):711–24. https://doi.org/10.1007/s00294-016-0596-0.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by NIH Grants No. NS081347 (D.J.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. DeGracia.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest. The present work is a review article and does not directly involve animal or human research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeGracia, D.J. Disease of mRNA Regulation: Relevance for Ischemic Brain Injury. Transl. Stroke Res. 9, 251–257 (2018). https://doi.org/10.1007/s12975-017-0586-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0586-7

Keywords

Navigation