Skip to main content

Advertisement

Log in

Translational MR Neuroimaging of Stroke and Recovery

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Multiparametric magnetic resonance imaging (MRI) has become a critical clinical tool for diagnosing focal ischemic stroke severity, staging treatment, and predicting outcome. Imaging during the acute phase focuses on tissue viability in the stroke vicinity, while imaging during recovery requires the evaluation of distributed structural and functional connectivity. Preclinical MRI of experimental stroke models provides validation of non-invasive biomarkers in terms of cellular and molecular mechanisms, while also providing a translational platform for evaluation of prospective therapies. This brief review of translational stroke imaging discusses the acute to chronic imaging transition, the principles underlying common MRI methods employed in stroke research, and the experimental results obtained by clinical and preclinical imaging to determine tissue viability, vascular remodeling, structural connectivity of major white matter tracts, and functional connectivity using task-based and resting-state fMRI during the stroke recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Barquera S, Pedroza-Tobias A, Medina C, Hernandez-Barrera L, Bibbins-Domingo K, Lozano R, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46(5):328–38.

    Article  PubMed  Google Scholar 

  2. Flynn RW, MacWalter RS, Doney AS. The cost of cerebral ischaemia. Neuropharmacology. 2008;55(3):250–6.

    Article  CAS  PubMed  Google Scholar 

  3. Miller EL, Murray L, Richards L, Zorowitz RD, Bakas T, Clark P, et al. Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke. 2010;41(10):2402–48.

    Article  PubMed  Google Scholar 

  4. Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke. 2008;39(3):924–8.

    Article  PubMed  Google Scholar 

  5. Cramer SC. Drugs to enhance motor recovery after stroke. Stroke. 2015;46(10):2998–3005.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Krieger DW. Therapeutic drug approach to stimulate clinical recovery after brain injury. Front Neurol Neurosci. 2013;32:76–87.

    Article  PubMed  Google Scholar 

  7. Xing C, Hayakawa K, Lok J, Arai K, Lo EH. Injury and repair in the neurovascular unit. Neurol Res. 2012;34(4):325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nhan H, Barquist K, Bell K, Esselman P, Odderson IR, Cramer SC. Brain function early after stroke in relation to subsequent recovery. J Cereb Blood Flow Metab. 2004;24(7):756–63.

    Article  PubMed  Google Scholar 

  10. Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain. 2005;128(Pt 5):1122–38.

    Article  PubMed  Google Scholar 

  11. Hossmann KA, Kleihues P. Reversibility of ischemic brain damage. Arch Neurol. 1973;29(6):375–84.

    Article  CAS  PubMed  Google Scholar 

  12. Peisker T, Koznar B, Stetkarova I, Widimsky P. Acute stroke therapy: a review. Trends Cardiovasc Med 2016. doi:10.1016/j.tcm.2016.06.009.

  13. Del Zoppo GJ, Saver JL, Jauch EC, Adams Jr HP, C. American Heart Association Stroke. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke. 2009;40(8):2945–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez RG. Current state of acute stroke imaging. Stroke. 2013;44(11):3260–4.

    Article  PubMed  Google Scholar 

  15. Wu O, Schwamm LH, Sorensen AG. Imaging stroke patients with unclear onset times. Neuroimaging Clin N Am. 2011;21(2):327–44. xi.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen F, Ni YC. Magnetic resonance diffusion-perfusion mismatch in acute ischemic stroke: an update. World J Radiol. 2012;4(3):63–74.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heiss WD. Radionuclide imaging in ischemic stroke. J Nucl Med. 2014;55(11):1831–41.

    Article  CAS  PubMed  Google Scholar 

  18. Wu O, Koroshetz WJ, Ostergaard L, Buonanno FS, Copen WA, Gonzalez RG, et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke. 2001;32(4):933–42.

    Article  CAS  PubMed  Google Scholar 

  19. Bouts MJ, Tiebosch IA, van der Toorn A, Viergever MA, Wu O, Dijkhuizen RM. Early identification of potentially salvageable tissue with MRI-based predictive algorithms after experimental ischemic stroke. J Cereb Blood Flow Metab. 2013;33(7):1075–82.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu O, Sumii T, Asahi M, Sasamata M, Ostergaard L, Rosen BR, et al. Infarct prediction and treatment assessment with MRI-based algorithms in experimental stroke models. J Cereb Blood Flow Metab. 2007;27(1):196–204.

    Article  PubMed  Google Scholar 

  21. Guo Y, Zhou IY, Chan ST, Wang Y, Mandeville ET, Igarashi T, et al. pH-sensitive MRI demarcates graded tissue acidification during acute stroke—pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI. Neuroimage. 2016;141:242–9.

    Article  CAS  PubMed  Google Scholar 

  22. Cheung JS, Wang E, Lo EH, Sun PZ. Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke. 2012;43(8):2252–4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ay H, Koroshetz WJ, Vangel M, Benner T, Melinosky C, Zhu M, et al. Conversion of ischemic brain tissue into infarction increases with age. Stroke. 2005;36(12):2632–6.

    Article  PubMed  Google Scholar 

  24. Ergul A, Hafez S, Fouda A, Fagan SC. Impact of comorbidities on acute injury and recovery in preclinical stroke research: focus on hypertension and diabetes. Transl Stroke Res. 2016;7(4):248–60.

    Article  CAS  PubMed  Google Scholar 

  25. Heiss WD, Kidwell CS. Imaging for prediction of functional outcome and assessment of recovery in ischemic stroke. Stroke. 2014;45(4):1195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Duong TQ. Magnetic resonance imaging of perfusion-diffusion mismatch in rodent and non-human primate stroke models. Neurol Res. 2013;35(5):465–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hossmann KA. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab. 2012;32(7):1310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hossmann KA. Cerebral ischemia: models, methods and outcomes. Neuropharmacology. 2008;55(3):257–70.

    Article  CAS  PubMed  Google Scholar 

  29. Ames 3rd A, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437–53.

    PubMed  PubMed Central  Google Scholar 

  30. Wu O, Ostergaard L, Sorensen AG. Technical aspects of perfusion-weighted imaging. Neuroimaging Clin N Am. 2005;15(3):623–37. xi.

    Article  PubMed  Google Scholar 

  31. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6:731–44.

    CAS  PubMed  Google Scholar 

  32. Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2014; 73(1):102–16.

  33. Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging. 2015;41(5):1165–80.

    Article  PubMed  Google Scholar 

  34. Zaharchuk G. Arterial spin labeling for acute stroke: practical considerations. Transl Stroke Res. 2012;3(2):228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Duhamel G, Callot V, Tachrount M, Alsop DC, Cozzone PJ. Pseudo-continuous arterial spin labeling at very high magnetic field (11.75 T) for high-resolution mouse brain perfusion imaging. Magn Reson Med. 2012;67(5):1225–36.

    Article  PubMed  Google Scholar 

  36. Richardson JD, Baker JM, Morgan PS, Rorden C, Bonilha L, Fridriksson J. Cerebral perfusion in chronic stroke: implications for lesion-symptom mapping and functional MRI. Behav Neurol. 2011;24(2):117–22.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ding G, Jiang Q, Li L, Zhang L, Zhang ZG, Ledbetter KA, et al. Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats. J Cereb Blood Flow Metab. 2008;28(8):1440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harkins KD, Galons JP, Divijak JL, Trouard TP. Changes in intracellular water diffusion and energetic metabolism in response to ischemia in perfused C6 rat glioma cells. Magn Reson Med. 2011;66(3):859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harris NG, Zilkha E, Houseman J, Symms MR, Obrenovitch TP, Williams SR. The relationship between the apparent diffusion coefficient measured by magnetic resonance imaging, anoxic depolarization, and glutamate efflux during experimental cerebral ischemia. J Cereb Blood Flow Metab. 2000;20(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  40. Obrenovitch TP, Scheller D, Matsumoto T, Tegtmeier F, Holler M, Symon L. A rapid redistribution of hydrogen ions is associated with depolarization and repolarization subsequent to cerebral ischemia reperfusion. J Neurophysiol. 1990;64(4):1125–33.

    CAS  PubMed  Google Scholar 

  41. Leithner C, Fuchtemeier M, Jorks D, Mueller S, Dirnagl U, Royl G. Infarct volume prediction by early magnetic resonance imaging in a murine stroke model depends on ischemia duration and time of imaging. stroke. 2015;46(11):3249–59.

    Article  PubMed  Google Scholar 

  42. Dijkhuizen RM, Knollema S, van der Worp HB, Ter Horst GJ, De Wildt DJ, van der Sprenkel Berkelbach JW, et al. Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat: evidence for region-specific sensitivity and delayed damage. Stroke. 1998;29(3):695–704.

    Article  CAS  PubMed  Google Scholar 

  43. van Lookeren Campagne M, Thomas GR, Thibodeaux H, Palmer JT, Williams SP, Lowe DG, et al. Secondary reduction in the apparent diffusion coefficient of water, increase in cerebral blood volume, and delayed neuronal death after middle cerebral artery occlusion and early reperfusion in the rat. J Cereb Blood Flow Metab. 1999;19(12):1354–64.

    Article  PubMed  Google Scholar 

  44. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2 weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.

    Article  CAS  PubMed  Google Scholar 

  45. Milidonis X, Marshall I, Macleod MR, Sena ES. Magnetic resonance imaging in experimental stroke and comparison with histology: systematic review and meta-analysis. Stroke. 2015;46(3):843–51.

    Article  CAS  PubMed  Google Scholar 

  46. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13(4):534–46.

    Article  PubMed  Google Scholar 

  47. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51(4):807–15.

    Article  PubMed  Google Scholar 

  48. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625–32.

    Article  CAS  PubMed  Google Scholar 

  49. Beaulieu C. The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed. 2002;15(7–8):435–55.

    Article  PubMed  Google Scholar 

  50. Fan SJ, Lee FY, Cheung MM, Ding AY, Yang J, Ma SJ, et al. Bilateral substantia nigra and pyramidal tract changes following experimental intracerebral hemorrhage: an MR diffusion tensor imaging study. NMR Biomed. 2013;26(9):1089–95.

    Article  PubMed  Google Scholar 

  51. Tuor UI, Morgunov M, Sule M, Qiao M, Clark D, Rushforth D, et al. Cellular correlates of longitudinal diffusion tensor imaging of axonal degeneration following hypoxic-ischemic cerebral infarction in neonatal rats. Neuroimage Clin. 2014;6:32–42.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schwartz ED, Duda J, Shumsky JS, Cooper ET, Gee J. Spinal cord diffusion tensor imaging and fiber tracking can identify white matter tract disruption and glial scar orientation following lateral funiculotomy. J Neurotrauma. 2005;22(12):1388–98.

    Article  PubMed  Google Scholar 

  53. Budde MD, Janes L, Gold E, Turtzo LC, Frank JA. The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain. 2011;134(Pt 8):2248–60.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke. 2015;46(1):296–301.

    Article  PubMed  Google Scholar 

  55. Puig J, Pedraza S, Blasco G, Daunis IEJ, Prados F, Remollo S, et al. Acute damage to the posterior limb of the internal capsule on diffusion tensor tractography as an early imaging predictor of motor outcome after stroke. AJNR Am J Neuroradiol. 2011;32(5):857–63.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang Q, Zhang ZG, Ding GL, Silver B, Zhang L, Meng H, et al. MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage. 2006;32(3):1080–9.

    Article  PubMed  Google Scholar 

  57. Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, et al. MRI identification of white matter reorganization enhanced by erythropoietin treatment in a rat model of focal ischemia. Stroke. 2009;40(3):936–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. van der Zijden JP, van der Toorn A, van der Marel K, Dijkhuizen RM. Longitudinal in vivo MRI of alterations in perilesional tissue after transient ischemic stroke in rats. Exp Neurol. 2008;212(1):207–12.

    Article  PubMed  Google Scholar 

  59. Pitkonen M, Abo-Ramadan U, Marinkovic I, Pedrono E, Hasan KM, Strbian D, et al. Long-term evolution of diffusion tensor indices after temporary experimental ischemic stroke in rats. Brain Res. 2012;1445:103–10.

    Article  CAS  PubMed  Google Scholar 

  60. van Meer MP, Otte WM, van der Marel K, Nijboer CH, Kavelaars A, van der Sprenkel JW, et al. Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci. 2012;32(13):4495–507.

    Article  PubMed  CAS  Google Scholar 

  61. Arai K, Jin G, Navaratna D, Lo EH. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 2009;276(17):4644–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ostwaldt AC, Rozanski M, Schaefer T, Ebinger M, Jungehulsing GJ, Villringer K, et al. Hyperintense acute reperfusion marker is associated with higher contrast agent dosage in acute ischaemic stroke. Eur Radiol. 2015;25(11):3161–6.

    Article  PubMed  Google Scholar 

  63. Moisan A, Favre IM, Rome C, Grillon E, Naegele B, Barbieux M, et al. Microvascular plasticity after experimental stroke: a molecular and MRI study. Cerebrovasc Dis. 2014;38(5):344–53.

    Article  CAS  PubMed  Google Scholar 

  64. Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 2015;12:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dennie J, Mandeville JB, Boxerman JL, Packard SD, Rosen BR, Weisskoff RM. NMR imaging of changes in vascular mophology due to tumor angiogenesis. Magn Reson Med. 1998;40(6):793–9.

    Article  CAS  PubMed  Google Scholar 

  66. Tropres I, Lamalle L, Peoc’h M, Farion R, Usson Y, Decorps M, et al. In vivo assessment of tumoral angiogenesis. Magn Reson Med. 2004;51(3):533–41.

    Article  CAS  PubMed  Google Scholar 

  67. Jensen JH, Chandra R. MR imaging of microvasculature. Magn Reson Med. 2000;44(2):224–30.

    Article  CAS  PubMed  Google Scholar 

  68. Lemasson B, Valable S, Farion R, Krainik A, Remy C, Barbier EL. In vivo imaging of vessel diameter, size, and density: a comparative study between MRI and histology. Magn Reson Med. 2013;69(1):18–26.

    Article  PubMed  Google Scholar 

  69. Bosomtwi A, Jiang Q, Ding GL, Zhang L, Zhang ZG, Lu M, et al. Quantitative evaluation of microvascular density after stroke in rats using MRI. J Cereb Blood Flow Metab. 2008;28(12):1978–87.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Some remarks on the growth-rate and angiogenesis of microvessels in ischemic stroke. Morphometric and immunocytochemical studies. Patol Pol. 1993;44(4):203–9.

    CAS  PubMed  Google Scholar 

  71. Christen T, Ni W, Qiu D, Schmiedeskamp H, Bammer R, Moseley M, et al. High-resolution cerebral blood volume imaging in humans using the blood pool contrast agent ferumoxytol. Magn Reson Med. 2012;70(3):705–10.

  72. Cramer SC. Functional imaging in stroke recovery. Stroke. 2004;35(11 Suppl 1):2695–8.

    Article  PubMed  Google Scholar 

  73. Mandeville JB. IRON fMRI measurements of CBV and implications for BOLD signal. Neuroimage. 2012;62:1000–8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brown GG, Perthen JE, Liu TT, Buxton RB. A primer on functional magnetic resonance imaging. Neuropsychol Rev. 2007;17(2):107–25.

    Article  PubMed  Google Scholar 

  75. Buma FE, Lindeman E, Ramsey NF, Kwakkel G. Functional neuroimaging studies of early upper limb recovery after stroke: a systematic review of the literature. Neurorehabil Neural Repair. 2010;24(7):589–608.

    Article  PubMed  Google Scholar 

  76. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A. 2001;98(22):12766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abo M, Chen Z, Lai LJ, Reese T, Bjelke B. Functional recovery after brain lesion—contralateral neuromodulation: an fMRI study. Neuroreport. 2001;12(7):1543–7.

    Article  CAS  PubMed  Google Scholar 

  78. Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci. 2003;23(2):510–7.

    CAS  PubMed  Google Scholar 

  79. Weber R, Ramos-Cabrer P, Justicia C, Wiedermann D, Strecker C, Sprenger C, et al. Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats. J Neurosci. 2008;28(5):1022–9.

    Article  CAS  PubMed  Google Scholar 

  80. Sicard KM, Henninger N, Fisher M, Duong TQ, Ferris CF. Long-term changes of functional MRI-based brain function, behavioral status, and histopathology after transient focal cerebral ischemia in rats. Stroke. 2006;37(10):2593–600.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sauter A, Reese T, Porszasz R, Baumann D, Rausch M, Rudin M. Recovery of function in cytoprotected cerebral cortex in rat stroke model assessed by functional MRI. Magn Reson Med. 2002;47(4):759–65.

    Article  PubMed  Google Scholar 

  82. Villien M, Wey HY, Mandeville JB, Catana C, Polimeni JR, Sander CY, et al. Dynamic functional imaging of brain glucose utilization using fPET-FDG. Neuroimage. 2014;100:192–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. van Meer MP, van der Marel K, Otte WM, van der Sprenkel Berkelbach JW, Dijkhuizen RM. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study. J Cereb Blood Flow Metab. 2010;30(10):1707–11.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Binkofski F, Seitz RJ. Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology. 2004;63(7):1223–9.

    Article  PubMed  Google Scholar 

  85. Kim YR, Huang IJ, Lee SR, Tejima E, Mandeville JB, van Meer MP, et al. Measurements of BOLD/CBV ratio show altered fMRI hemodynamics during stroke recovery in rats. J Cereb Blood Flow Metab. 2005;25(7):820–9.

    Article  PubMed  Google Scholar 

  86. Dijkhuizen RM, van der Marel K, Otte WM, Hoff EI, van der Zijden JP, van der Toorn A, et al. Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl Stroke Res. 2012;3(1):36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Veldsman M, Cumming T, Brodtmann A. Beyond BOLD: optimizing functional imaging in stroke populations. Hum Brain Mapp. 2015;36(4):1620–36.

    Article  PubMed  Google Scholar 

  88. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  89. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103(37):13848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Carter AR, Shulman GL, Corbetta M. Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage. 2012;62(4):2271–80.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365–75.

    PubMed  PubMed Central  Google Scholar 

  92. Xu H, Qin W, Chen H, Jiang L, Li K, Yu C. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke. PLoS One. 2014;9(1):e84729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bauer AQ, Kraft AW, Wright PW, Snyder AZ, Lee JM, Culver JP. Optical imaging of disrupted functional connectivity following ischemic stroke in mice. Neuroimage. 2014;99:388–401.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Murphy K, Birn RM, Bandettini PA. Resting-state fMRI confounds and cleanup. Neuroimage. 2013;80:349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zaharchuk G. Better late than never: the long journey for noncontrast arterial spin labeling perfusion imaging in acute stroke. Stroke. 2012;43(4):931–2.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013;17(12):666–82.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M. Learning sculpts the spontaneous activity of the resting human brain. Proc Natl Acad Sci U S A. 2009;106(41):17558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Albert NB, Robertson EM, Miall RC. The resting human brain and motor learning. Curr Biol. 2009;19(12):1023–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiu D, Zaharchuk G, Christen T, Ni WW, Moseley ME. Contrast-enhanced functional blood volume imaging (CE-fBVI): enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. Neuroimage. 2012;62:1726–31.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applications. J Nucl Med. 2012;53(12):1916–25.

    Article  PubMed  Google Scholar 

  101. Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI, et al. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev. 2012;36(4):1188–216.

    Article  PubMed  Google Scholar 

  102. Chen S, Yang Q, Chen G, Zhang JH. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res. 2015;6(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  103. Wang C, Schroeder FA, Wey HY, Borra R, Wagner FF, Reis S, et al. In vivo imaging of histone deacetylases (HDACs) in the central nervous system and major peripheral organs. J Med Chem. 2014;57(19):7999–8009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang ZG, Chopp M. Promoting brain remodeling to aid in stroke recovery. Trends Mol Med. 2015;21(9):543–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiri T. Mandeville.

Ethics declarations

Funding

This work was funded in part by a grant from the National Institutes of Health (P01NS055104).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandeville, E.T., Ayata, C., Zheng, Y. et al. Translational MR Neuroimaging of Stroke and Recovery. Transl. Stroke Res. 8, 22–32 (2017). https://doi.org/10.1007/s12975-016-0497-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-016-0497-z

Keywords

Navigation