Skip to main content

Advertisement

Log in

Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Germinal matrix hemorrhage (GMH) is defined as the rupture of immature blood vessels in the subependymal zone of premature infants with significant mortality and morbidity. Considering the notable social and ecological stress brought by GMH-induced brain injury and sequelae, safe and efficient pharmacological preventions are badly needed. Currently, several appropriate animal models are available to mimic the clinical outcomes of GMH in human patients. In the long run, hemorrhagic strokes are the research target. Previously, we found that minocycline was efficient to alleviate GMH-induced brain edema and posthemorrhagic hydrocephalus (PHH) in rats, which may be closely related to the activation of cannabinoid receptor 2 (CB2R). However, how the two molecules correlate and the underlined molecular pathway remain unknown. To extensively understand current experimental GMH treatment, this literature review critically evaluates existing therapeutic strategies, potential treatments, and potentially involved molecular mechanisms. Each strategy has its own advantages and disadvantages. Some of the mechanisms are still controversial, requiring an increasing number of animal experiments before the therapeutic strategy would be widely accepted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ballabh P, Braun A, Nedergaard M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2004;56:117–24.

    Article  PubMed  Google Scholar 

  2. Bassan H, Limperopoulos C, Visconti K, Mayer DL, Feldman HA, Avery L, et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics. 2007;120:785–92.

    Article  PubMed  Google Scholar 

  3. Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr. 2012;9:242–58.

    Article  PubMed  Google Scholar 

  4. Heron M, Sutton PD, Xu J, Ventura SJ, Strobino DM, Guyer B. Annual summary of vital statistics: 2007. Pediatrics. 2010;125:4–15.

    Article  PubMed  Google Scholar 

  5. Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Translational Stroke Res. 2012;3:25–38.

    Article  CAS  Google Scholar 

  6. Lekic T, Manaenko A, Rolland W, Krafft PR, Peters R, Hartman RE, et al. Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol. 2012;236:69–78.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Shennan AH, Bewley S. Why should preterm births be rising? BMJ. 2006;332:924–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke: J Cereb Circulation. 2011;42:465–70.

    Article  CAS  Google Scholar 

  9. Chen Q, Zhang J, Guo J, Tang J, Tao Y, Li L, et al. Chronic hydrocephalus and perihematomal tissue injury developed in a rat model of intracerebral hemorrhage with ventricular extension. Translational Stroke Res. 2015;6:125–32.

    Article  CAS  Google Scholar 

  10. Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 2015;1594:115–24.

    Article  CAS  PubMed  Google Scholar 

  11. Tang J, Chen Q, Guo J, Yang L, Tao Y, Li L, et al. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced neuroinflammation and brain edema by activating cannabinoid receptor 2. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9154-x.

  12. Tang J, Tao Y, Tan L, Yang L, Niu Y, Chen Q, et al. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro. Neuropharmacology. 2015;95:424–33.

    Article  CAS  PubMed  Google Scholar 

  13. Tao Y, Tang J, Chen Q, Guo J, Li L, Yang L, et al. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model. Brain Res. 2015;1602:127–35.

    Article  CAS  PubMed  Google Scholar 

  14. Berger R, Bender S, Sefkow S, Klingmuller V, Kunzel W, Jensen A. Peri/intraventricular haemorrhage: a cranial ultrasound study on 5286 neonates. Eur J Obstet Gynecol Reprod Biol. 1997;75:191–203.

    Article  CAS  PubMed  Google Scholar 

  15. Tsitouras V, Sgouros S. Infantile posthemorrhagic hydrocephalus. Childs Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg. 2011;27:1595–608.

    Article  Google Scholar 

  16. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.

    Article  CAS  PubMed  Google Scholar 

  17. Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA, et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics. 2015;135:e32–42.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454

  19. Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol: SN. 2001;6:135–46.

    Article  CAS  PubMed  Google Scholar 

  20. Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88:F464–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Bruinsma N, Stobberingh EE, Herpers MJ, Vles JS, Weber BJ, Gavilanes DA. Subcutaneous ventricular catheter reservoir and ventriculoperitoneal drain-related infections in preterm infants and young children. Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis. 2000;6:202–6.

    Article  CAS  Google Scholar 

  22. Brockmeyer DL, Wright LC, Walker ML, Ward RM. Management of posthemorrhagic hydrocephalus in the low-birth-weight preterm neonate. Pediatr Neurosci. 1989;15:302–7. discussion 308.

    Article  CAS  PubMed  Google Scholar 

  23. Kormanik K, Praca J, Garton HJ, Sarkar S. Repeated tapping of ventricular reservoir in preterm infants with post-hemorrhagic ventricular dilatation does not increase the risk of reservoir infection. J Perinatol: Off J Calif Perinatal Assoc. 2010;30:218–21.

    Article  CAS  Google Scholar 

  24. Perret GE, Graf CJ. Subgaleal shunt for temporary ventricle decompression and subdural drainage. J Neurosurg. 1977;47:590–5.

    Article  CAS  PubMed  Google Scholar 

  25. Vassilyadi M, Tataryn Z, Shamji MF, Ventureyra EC. Functional outcomes among premature infants with intraventricular hemorrhage. Pediatr Neurosurg. 2009;45:247–55.

    Article  PubMed  Google Scholar 

  26. Gould SJ, Howard S. Glial differentiation in the germinal layer of fetal and preterm infant brain: an immunocytochemical study. Pediatr Pathol Affiliated Int Paediatr Pathol Assoc. 1988;8:25–36.

    CAS  Google Scholar 

  27. Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67:1–8.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Volpe JJ. Intraventricular hemorrhage in the premature infant—current concepts. Part I. Ann Neurol. 1989;25:3–11.

    Article  CAS  PubMed  Google Scholar 

  29. Antoniuk S, da Silva RV. Periventricular and intraventricular hemorrhage in the premature infants. Rev Neurol. 2000;31:238–43.

    CAS  PubMed  Google Scholar 

  30. Kenny JD, Garcia-Prats JA, Hilliard JL, Corbet AJ, Rudolph AJ. Hypercarbia at birth: a possible role in the pathogenesis of intraventricular hemorrhage. Pediatrics. 1978;62:465–7.

    CAS  PubMed  Google Scholar 

  31. Hill A, Shackelford GD, Volpe JJ. A potential mechanism of pathogenesis for early posthemorrhagic hydrocephalus in the premature newborn. Pediatrics. 1984;73:19–21.

    CAS  PubMed  Google Scholar 

  32. Oi S, Di Rocco C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg. 2006;22:662–9.

    Article  Google Scholar 

  33. Douglas-Escobar M, Weiss MD. Biomarkers of brain injury in the premature infant. Front Neurol. 2012;3:185.

    PubMed Central  PubMed  Google Scholar 

  34. Aquilina K, Chakkarapani E, Thoresen M. Early deterioration of cerebrospinal fluid dynamics in a neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg Pediatr. 2012;10:529–37.

    Article  PubMed  Google Scholar 

  35. El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, et al. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2006;59:673–9.

    Article  PubMed  Google Scholar 

  36. Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci: Off J Soc Neurosci. 2012;32:9588–600.

    Article  CAS  Google Scholar 

  37. Ballabh P, Hu F, Kumarasiri M, Braun A, Nedergaard M. Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr Res. 2005;58:791–8.

    Article  CAS  PubMed  Google Scholar 

  38. Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, et al. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci: Off J Soc Neurosci. 2007;27:12012–24.

    Article  CAS  Google Scholar 

  39. Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, et al. Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol. 2010;226:110–9.

    Article  PubMed  Google Scholar 

  40. Glees P, Hasan M. Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Neurosurg Rev. 1990;13:231–42.

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez-Lopez D, Faustino J, Derugin N, Wendland M, Lizasoain I, Moro MA, et al. Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. Neuroscience. 2012;207:307–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M. Microglia activation in the extremely preterm human brain. Pediatr Res. 2013;73:301–9.

    Article  CAS  PubMed  Google Scholar 

  43. Tada T, Kanaji M, Kobayashi S. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1. J Neuroimmunol. 1994;50:153–8.

    Article  CAS  PubMed  Google Scholar 

  44. Cherian S, Thoresen M, Silver IA, Whitelaw A, Love S. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol. 2004;30:585–600.

    Article  CAS  PubMed  Google Scholar 

  45. Balasubramaniam J, Del Bigio MR. Animal models of germinal matrix hemorrhage. J Child Neurol. 2006;21:365–71.

    PubMed  Google Scholar 

  46. Reynolds ML, Evans CA, Reynolds EO, Saunders NR, Durbin GM, Wigglesworth JS. Intracranial haemorrhage in the preterm sheep fetus. Early Hum Dev. 1979;3:163–86.

    Article  CAS  PubMed  Google Scholar 

  47. Ting P, Yamaguchi S, Bacher JD, Killens RH, Myers RE. Failure to produce germinal matrix or intraventricular hemorrhage by hypoxia, hypo-, or hypervolemia. Exp Neurol. 1984;83:449–60.

    Article  CAS  PubMed  Google Scholar 

  48. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120:817–24.

    Article  CAS  PubMed  Google Scholar 

  49. Pond WG, Boleman SL, Fiorotto ML, Ho H, Knabe DA, Mersmann HJ, et al. Perinatal ontogeny of brain growth in the domestic pig. Proc Soc Exp Biol Med Soc Exp Biol Med. 2000;223:102–8.

    Article  CAS  Google Scholar 

  50. Stankovic MR, Maulik D, Rosenfeld W, Stubblefield PG, Kofinas AD, Drexler S, et al. Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets. J Perinat Med. 1999;27:279–86.

    Article  CAS  PubMed  Google Scholar 

  51. Leuschen MP, Nelson Jr RM. Telencephalic microvessels of premature beagle pups. Anat Rec. 1986;215:59–64.

    Article  CAS  PubMed  Google Scholar 

  52. Trommer BL, Groothuis DR, Pasternak JF. Quantitative analysis of cerebral vessels in the newborn puppy: the structure of germinal matrix vessels may predispose to hemorrhage. Pediatr Res. 1987;22:23–8.

    Article  CAS  PubMed  Google Scholar 

  53. Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage: ethamsylate studies. Prostaglandins. 1984;27:245–56.

    Article  CAS  PubMed  Google Scholar 

  54. Goddard-Finegold J, Donley DK, Adham BI, Michael LH. Phenobarbital and cerebral blood flow during hypertension in the newborn beagle. Pediatrics. 1990;86:501–8.

    CAS  PubMed  Google Scholar 

  55. Ment LR, Stewart WB, Duncan CC, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. J Neurosurg. 1982;57:219–23.

    Article  CAS  PubMed  Google Scholar 

  56. Ment LR, Stewart WB, Duncan CC, Scott DT, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. Effect of indomethacin on local cerebral glucose utilization. J Neurosurg. 1984;60:737–42.

    Article  CAS  PubMed  Google Scholar 

  57. Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage. Effect of superoxide dismutase on cerebral blood flow and prostaglandins. J Neurosurg. 1985;62:563–9.

    Article  CAS  PubMed  Google Scholar 

  58. Kakita A, Goldman JE. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron. 1999;23:461–72.

    Article  CAS  PubMed  Google Scholar 

  59. Levers TE, Edgar JM, Price DJ. The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol. 2001;48:265–77.

    Article  CAS  PubMed  Google Scholar 

  60. Altman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975;23:896–920.

    Article  CAS  PubMed  Google Scholar 

  61. Lekic T, Manaenko A, Rolland W, Fathali N, Peterson M, Tang J, et al. Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl. 2011;111:237–41.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Lekic T, Manaenko A, Rolland W, Virbel K, Hartman R, Tang J, et al. Neuroprotection by melatonin after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl. 2011;111:201–6.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Leitzke AS, Rolland WB, Krafft PR, Lekic T, Klebe D, Flores JJ, et al. Isoflurane post-treatment ameliorates GMH-induced brain injury in neonatal rats. Stroke; J Cerebral Circ. 2013;44:3587–90.

    Article  CAS  Google Scholar 

  64. McCrea HJ, Ment LR. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol. 2008;35:777–92. vii.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Klebe D, Krafft PR, Hoffmann C, Lekic T, Flores JJ, Rolland W, et al. Acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage in neonatal rats. Stroke; J Cerebral Circ. 2014;45:2475–2479.

  66. Lekic T, Manaenko A, Rolland W, Ostrowski RP, Virbel K, Tang J, et al. Beneficial effect of hyperbaric oxygenation after neonatal germinal matrix hemorrhage. Acta Neurochir Suppl. 2011;111:253–7.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Tosun C, Koltz MT, Kurland DB, Ijaz H, Gurakar M, Schwartzbauer G, et al. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci. 2013;3:215–238

  68. Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, et al. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med. 2007;13:477–85.

    Article  CAS  PubMed  Google Scholar 

  69. Del Bigio MR, Wilson MJ, Enno T. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol. 2003;53:337–46.

    Article  PubMed  Google Scholar 

  70. Deren KE, Forsyth J, Abdullah O, Hsu EW, Klinge PM, Silverberg GD, et al. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus. Cerebrospinal Fluid Res. 2009;6:4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Mangano FT, McAllister 2nd JP, Jones HC, Johnson MJ, Kriebel RM. The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res. 1998;20:697–704.

    CAS  PubMed  Google Scholar 

  72. Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Akerstrom B, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation. 2013;10:100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, et al. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke; J Cereb Circ. 2013;44:497–504.

    Article  CAS  Google Scholar 

  74. Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH. Inhibition of transforming growth factor-beta attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage. Stroke; J Cereb Circ. 2014;45:828–34.

    Article  CAS  Google Scholar 

  75. Gomes FC, Sousa Vde O, Romao L. Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci: Off J Int Soc Dev Neurosci. 2005;23:413–24.

    Article  CAS  Google Scholar 

  76. Derynck R. TGF-beta-receptor-mediated signaling. Trends Biochem Sci. 1994;19:548–53.

    Article  CAS  PubMed  Google Scholar 

  77. Bernard DJ, Chapman SC, Woodruff TK. An emerging role for co-receptors in inhibin signal transduction. Mol Cell Endocrinol. 2001;180:55–62.

    Article  CAS  PubMed  Google Scholar 

  78. Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30:1793–803.

    Article  CAS  Google Scholar 

  79. Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49:208–12.

    Article  CAS  PubMed  Google Scholar 

  80. Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery. 2014;75:696–705. discussion 706.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Aronson AL. Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc. 1980;176:1061–8.

    CAS  PubMed  Google Scholar 

  82. Aso E, Juves S, Maldonado R, Ferrer I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J Alzheimer’s Dis: JAD. 2013;35:847–58.

    PubMed  Google Scholar 

  83. Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C. Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:200–8.

    Article  CAS  Google Scholar 

  84. Malfitano AM, Laezza C, D’Alessandro A, Procaccini C, Saccomanni G, Tuccinardi T, et al. Effects on immune cells of a new 1,8-naphthyridin-2-one derivative and its analogues as selective CB2 agonists: implications in multiple sclerosis. PLoS One. 2013;8:e62511.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Barichello T, Generoso JS, Simoes LR, Goularte JA, Petronilho F, Saigal P, et al. Role of microglial activation in the pathophysiology of bacterial meningitis. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9107-4.

  86. Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 2015;12:26.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol. 1999;57:563–81.

    Article  CAS  PubMed  Google Scholar 

  88. Diz-Chaves Y, Pernia O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation. 2012;9:71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Yang F, Zhou L, Wang D, Wang Z, Huang QY. Minocycline ameliorates hypoxia-induced blood-brain barrier damage by inhibition of HIF-1alpha through SIRT-3/PHD-2 degradation pathway. Neuroscience. 2015;304:250–9.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke; J Cereb Circ. 2011;42:3587–93.

    Article  Google Scholar 

  91. Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, et al. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb Cortex. 2015;25:35–45.

    Article  PubMed  Google Scholar 

  92. Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, et al. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke; J Cereb Circ. 2008;39:3378–88.

    Article  CAS  Google Scholar 

  93. Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke; J Cereb Circ. 2007;38:759–62.

    Article  CAS  Google Scholar 

  94. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.

    Article  PubMed  Google Scholar 

  95. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7:124.

    Google Scholar 

  96. Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci. 2014;8:189.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci: Off J Soc Neurosci. 2004;24:9838–46.

    Article  CAS  Google Scholar 

  98. Schwab JM, Schluesener HJ. Microglia rules: insights into microglial-neuronal signaling. Cell Death Differ. 2004;11:1245–6.

    Article  CAS  PubMed  Google Scholar 

  99. Esiaba I, Angeles DM, Holden MS, Tan JB, Asmerom Y, Gollin G, et al. Urinary allantoin is elevated in severe intraventricular hemorrhage in the preterm newborn. Translational Stroke Res. 2015. doi:10.1007/s12975-015-0405-y.

  100. Tataranno ML, Perrone S, Buonocore G. Plasma biomarkers of oxidative stress in neonatal brain injury. Clin Perinatol. 2015;42:529–39.

    Article  PubMed  Google Scholar 

  101. Abdel Ghany EA, Alsharany W, Ali AA, Younass ER, Hussein JS. Anti-oxidant profiles and markers of oxidative stress in preterm neonates. Paediatr Int Child Health. 2015;2046905515Y0000000017.

  102. Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005;1039:30–6.

    Article  CAS  PubMed  Google Scholar 

  103. Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology. 2001;40:433–9.

    Article  CAS  PubMed  Google Scholar 

  104. Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994;24:101–46.

    Article  CAS  PubMed  Google Scholar 

  105. Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ. Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus. 2002;12:165–73.

    Article  CAS  PubMed  Google Scholar 

  106. Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87:F37–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998;53:637–44.

    Article  CAS  PubMed  Google Scholar 

  108. Hirschi KK, D’Amore PA. Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS. 1997;79:419–28.

    CAS  PubMed  Google Scholar 

  109. von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res. 2006;312:623–9.

    Article  CAS  Google Scholar 

  110. Guasti L, Richardson D, Jhaveri M, Eldeeb K, Barrett D, Elphick MR, et al. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain. 2009;5:35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brain—integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci. 2014;8:291.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Nash KR, Moran P, Finneran DJ, Hudson C, Robinson J, Morgan D, et al. Fractalkine over expression suppresses alpha-synuclein-mediated neurodegeneration. Mol Ther: J Am Soc Gene Ther. 2015;23:17–23.

    Article  CAS  Google Scholar 

  113. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.

    Article  CAS  PubMed  Google Scholar 

  114. Su P, Zhang J, Zhao F, Aschner M, Chen J, Luo W. The interaction between microglia and neural stem/precursor cells. Brain Res Bull. 2014;109:32–8.

    Article  CAS  PubMed  Google Scholar 

  115. Reshef R, Kreisel T, Beroukhim Kay D, Yirmiya R. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis. Brain Behav Immun. 2014;41:239–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 81571130; no. 81571116) and the National ‘973’ Project of China (no. 2014 CB541605). The authors thank Professor Guohua Xi from the University of Michigan for his professional suggestions on the logic and view in this field.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Zhu or Zhi Chen.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Tao, Y., Jiang, B. et al. Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review. Transl. Stroke Res. 7, 20–32 (2016). https://doi.org/10.1007/s12975-015-0432-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0432-8

Keywords

Navigation