Skip to main content

Advertisement

Log in

Microscopic and proteomic analysis of Zea mays roots (P30F53 variety) inoculated with Azospirillum brasilense strain FP2

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria (PGPR) are considered to have a beneficial effect on host plants. Azospirillum brasilense is a diazotroph associated with important agricultural crops such as maize and wheat, and has been used as model organism to investigate associative plant growth promotion. In this study, we have employed scanning electronic microscopic to observe the presence of bacterium on the root surface. Two-dimensional gel electrophoresis and mass spectrometry were used to analyze the changes in protein profile of maize roots in response to A. brasilense strain FP2 7 days after inoculation and we observed 46 differently expressed protein spots. We report the identification of three of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PGPR:

plant growth-promoting rhizobacteria

DAI:

days after inoculation

References

  • Alberton D, Mueller-Santos M, Campos Brusamarello-Santos LC, Valdameri G, Cordeiro FA, Yates MG, Pedrosa FdO, de Souza EM. 2013. Comparative proteomics analysis of the rice roots colonized by Herbaspirillum seropedicaestrain SmR1 reveals induction of the methionine recycling in the plant host. J. Proteome Res. 12: 4757–4768

    Article  CAS  PubMed  Google Scholar 

  • Arruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Passaglia L, Vargas L. 2013. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Appl. Soil Ecol. 63: 15–22

    Article  Google Scholar 

  • Arruebarrena Di Palma A, Pereyra CM, Moreno Ramirez L, Xiqui Vazquez ML, Baca BE, Pereyra MA, Lamattina L, Creus CM. 2013. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense. FEMS Microbiol. Lett. 338: 77–85

    Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M. 2011 Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp under drought stress World J. Microbiol. Biotechnol. 27: 197–205

    Article  CAS  Google Scholar 

  • Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA. 2010. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ. Microbiol. 12: 2233–2244

    CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan L, Sparks D. 2010.How the plant growth-promoting bacterium Azospirillum promotes plant growth-A critical assessment. Adv. Agron. 108: 77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE. 2004. Azospirillumplant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol. 50: 521–577

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Levanony H, Klein E. 1986. Evidence for aweak active external adsorption of Azospirillumbrasilense Cd to wheat roots. J. Gen. Microbiol. 132: 3069–3073

    Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN. 2008. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl. Microbiol. Biotechnol. 80: 199–209

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327–1350.

    Article  CAS  PubMed  Google Scholar 

  • Brusamarello-Santos LCC, Pacheco F, Aljanabi SMM, Monteiro RA, Cruz LM, Baura VA, Pedrosa FO, Souza EM, Wassem R. 2012. Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soi. 356: 113–125

    Article  CAS  Google Scholar 

  • Cangahuala-Inocente GC, do Amaral FP, Faleirov AC, Huergo LF, Maisonnave Arisi AC. 2013. Identification of six differentially accumulated proteins of Zea mays seedlings (DKB240 variety) inoculated with Azospirillum brasilense strain FP2. Eur. J. Soil Biol. 58: 45–50

    Article  CAS  Google Scholar 

  • Cheng Z, McConkey BJ, Glick BR. 2010. Proteomic studies of plant-bacterial interactions. Soil Biol. Biochem. 42: 1673–1684

    Article  CAS  Google Scholar 

  • Cordeiro FA, Tadra-Sfeir MZ, Huergo LF, Pedrosa FdO, Monteiro RA, de Souza EM. 2013. Proteomic analysis of Herbaspirillum seropedicaecultivated in the presence of sugar cane extract. J. Proteome Res. 12: 1142–1150

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L. 2005. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Plant. 221: 297–303

    Article  CAS  Google Scholar 

  • Dillon S, Bateman A. 2004. The Hotdog fold: wrapping up a superfamily of thioesterases and dehydratases. BMC Bioinformatic. 5: 109–122

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y. 2003. Plant growthpromoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107–149

    Article  CAS  Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B. 1999. Endophytic expression of nif genes of Azoarcus sp strain BH72 in rice roots. Mol. Plant-Microbe Interact. 12: 813–819

    Article  CAS  Google Scholar 

  • El Zemrany H, Cortet J, Lutz MP, Chabert A, Baudoin E, Haurat J, Maughan N, Felix D, Defago G, Bally R, Moenne-Loccoz Y. 2006. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol. Biochem. 38: 1712–1726

    Article  CAS  Google Scholar 

  • Fadel-Picheth C M, Souza E M, Rigo LU, Funayama S, Pedrosa FO. 1999. Regulation of the nifa gene of Azospirillum brasilense by ammonium and oxygen. FEMS Microbiology Letter. 179: 281–288

    Article  CAS  Google Scholar 

  • Faleiro AC, Pereira TP, Espindula E, Angonesi Brod FC, Maisonnave Arisi AC. 2013. Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosi. 61: 125–133

    Article  CAS  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y. 2012. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol. Lett. 326: 99–108

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Molina M, Winik B, Pedraza R. 2012. More than rhizosphere colonization of strawberry plants by Azospirillum brasilense. Appl. Soil Ecol.61: 205–212

    Article  Google Scholar 

  • Holguin G, Patten C, Glick B. 1999. Genetics and molecular biology of Azospirillum. Biol. Fert. Soil. 29: 10–23

    Article  CAS  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO. 2010. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soi. 331: 413–425

    Article  CAS  Google Scholar 

  • Ikeda A, Bassani L, Adamoski D, Stringari D, Cordeiro V, Glienke C, Steffens M, Hungria M, Galli-Terasawa L. 2013. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb. Ecol. 65: 154–160

    Article  PubMed  Google Scholar 

  • Katsy EI, Prilipov AG. 2009. Mobile elements of an Azospirillum brasilense Sp245 85-MDa plasmid involved in replicon fusions. Plasmi. 62: 22–29

    Article  CAS  Google Scholar 

  • Klassen G, Pedrosa FO, Souza EM, Funayama S, Rigo LU. 1997. Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMR1. Can. J. Microbiol. 43: 887–891

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, Prieto P. 2012. Bacterial endophytes and root hairs. Plant Soi. 361: 301–306

    Article  CAS  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L. 2008. Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol. Plant-Microbe In. 21: 1001–1009

    Article  CAS  Google Scholar 

  • Neal A, Ahmad S, Gordon-Weeks R, Ton J. 2012. Benzoxazinoids in Root Exudates of Maize Attract Pseudomonas putida to the Rhizosphere. Plos One 7: e35498

    Article  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA. 1994. Agronomic applications of Azospirillum-an evaluation of 20 years world wide field inoculation. Soil Biology & Biochemistry 26: 11601

    Article  Google Scholar 

  • Parales R, Harwood C. 2002. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 5: 266–273

    Article  CAS  PubMed  Google Scholar 

  • Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, Guerrero-Molina MF, Winik BC, Diaz-Ricci JC. 2010. Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J.Microbiol. Biotechnol. 26: 265–272

    Article  Google Scholar 

  • Prinsi B, Negri AS, Pesaresi P, Cocucci M, Espen L. 2009. Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis. BMC Plant Biol. 9: 113–130

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajendran C, Gerhardt ECM, Bjelic S, Gasperina A, Scarduelli M, Pedrosa FO, Chubatsu LS, Merrick M, Souza EM, Winkler FK, Huergo LF, Li X-D. 2011. Crystal structure of the GlnZ-DraG complex reveals a different form of P-II-target interaction. Proc. Natl.Acad. Sci. USA 108: 18972–18976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roesch LFW, de Quadros PD, Camargo FAO, Triplett EW. 2007. Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J.Microbiol. Biotechnol. 23: 1377–1383.

    Article  CAS  Google Scholar 

  • Roesch LFW, Olivares FL, Passaglia LMP, Selbach PA, de Sa ELS, de Camargo FAO. 2006. Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World J. Microbiol. Biotechnol. 22: 967–974

    Article  Google Scholar 

  • Ruebelt MC, Leimgruber NK, Lipp M, Reynolds TL, Nemeth MA, Astwood JD, Engel KH, Jany KD. 2006. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 1. Assessing analytical validation. J. Agric. Food Chem. 54: 2154–2161

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V. 2011.Plant growth promoting rhizobacteria: A critical review. Life Sci. Med. Res. 2011: 1–30

    Google Scholar 

  • Sujeeth N, Kini RK, Shailasree S, Wallaart E, Shetty SH, Hille J. 2012. Characterization of a hydroxyproline-rich glycoprotein in pearl millet and its differential expression in response to the downy mildew pathogen Sclerospora graminicola. Acta Physiol. Plan. 34: 779–791

    Article  CAS  Google Scholar 

  • Tameling W, Vossen J, Albrecht M, Lengauer T, Berden J, Haring M, Cornelissen B, Takken F. 2006. Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140: 1233–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Ooijen G, Mayr G, Kasiem M, Albrecht M, Cornelissen B, Takken F. 2008. Structure-function analysis of the NBARC domain of plant disease resistance proteins. J. Exper. Bot. 59: 1383–1397

    Article  CAS  Google Scholar 

  • Vargas L, Gurjao de Carvalho TL, Gomes Ferreira PC, Divan Baldani VL, Baldani JI, Hemerly AS. 2012. Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soi. 356: 127–137

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush, Singh V. 2010. Impact of plant growth promoting rhizobacteria on crop production. Intl. J. Agric. Res. 5: 954–983

    Article  Google Scholar 

  • Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moenne-Loccoz Y, Comte G. 2012. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas, and Glomus consortium under field conditions. Plant Soi. 356: 151–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Maisonnave Arisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faleiro, A.C., Neto, P.A.V., de Souza, T.V. et al. Microscopic and proteomic analysis of Zea mays roots (P30F53 variety) inoculated with Azospirillum brasilense strain FP2. J. Crop Sci. Biotechnol. 18, 63–71 (2015). https://doi.org/10.1007/s12892-014-0061-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-014-0061-x

Keywords

Navigation