Skip to main content
Log in

Correlation between morphological, chemical and RAPD markers for assessing genetic diversity in Withania somnifera (L.) Dunal

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Genetic diversity among 14 Withania accessions were studied using morphological, chemical, and RAPD (Rapid Amplification of Polymorphic DNA) markers. On the basis of morphological variation and maximum assimilation of chemical constituents, wild accessions were considered elite as compared to cultivated. The molecular study showed that a total of 12 DNA fragments were amplified with five random decamer primers 75% of which were polymorphic. Genetic similarity matrix based on the Dice index detected coefficients ranging from 0.556 to 0.941. These coefficients were used to construct a dendrogram using unweighted pair group method with arithmetic mean (UPGMA). These accessions were clustered into two major groups; the first group included AGB-009, AGB-012, AGB-042, AGB-030, AGB-053, AGB-019, AGB-017, AGB-002, and AGB-003; the second included AGB-025, AGB-001, AGB-036, AGB-015, and AGB-055. The highest similarity among the Ashwagandha accessions was observed between AGB-009 and AGB-030, AGB-009 and AGB-012, AGB-042 and AGB-030, AGB-025 and AGB-001, AGB-036 and AGB-015, AGB-015 and AGB-055 and between AGB-015 and AGB-055. The most distant populations in the dendrogram were AGB-053 and AGB-055. The combination of morphological, chemical, and molecular markers assessment will be useful in studying the genetic diversity of Withania for identification, conservation, breeding, improvement activities, and in order to achieve elite type in terms of bioactive metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asthana R, Raina MK. 1989. Pharmacology of Withania somnifera (Linn Dunal): A Review. Indian Drugs 26: 199–205

    Google Scholar 

  • Atta-Ur-Rahman A, Chaudhary MI, Qureshi S, Gul W, Yousuf M. 1998. Two new ergostane-type steroidal lactones from Withania coagulans. J. Nat. Prod. 61: 812–814

    Article  CAS  PubMed  Google Scholar 

  • Bautista R, Canovas FM, Claros MG. 2003. Genomic evidence for a repetitive nature of the RAPD polymorphism in Olea europaea (olive-tree). Euphytica 130: 185–190

    Article  CAS  Google Scholar 

  • Bhatia P, Rattan SIS, Cavallius J, Clark BFC. 1987. Withania somnifera (Ashwagandha) a so-called rejuvenator inhibits growth and macromolecular synthesis of human cells. Med. Sci. Res. 15: 515–516

    Google Scholar 

  • Bhattacharya SK, Goel RK, Kaur R, Ghosal S. 1987. Antistress activity of sitoinosides VII and VIII, newacylsteryl glucosides from Withania somnifera. Phytother. Res. 9: 10–13

    Google Scholar 

  • Bhattacharya SK, Muruganandam AV. 2003. Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacol. Biochem. Behav. 75(3): 547–55

    Article  CAS  PubMed  Google Scholar 

  • Bruschi P, Grossoni P, Bussotti F. 2003. Within- and amongtree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17: 164–172

    Google Scholar 

  • Budhiraja RD, Krishan P, Sudhir S. 2000. Biological activity of Withanolides. J. Sci. Ind. Res. 59: 904–911

    CAS  Google Scholar 

  • Chan KF, Sun M. 1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 95: 865–873

    Article  CAS  Google Scholar 

  • Colombo C, Second G, Valle TL, Charier A. 1998. Genetic diversity characterization of cassava cultivars (Manihot esculenta Crantez) using RAPD markers. Genet. Mol. Biol. 21: 69–84

    Article  Google Scholar 

  • Davis L, Kuttan G. 2000. Immunomodulatory activity of Withania somnifera. J. Ethnopharmacol. 71(1–2): 193–200

    Article  CAS  PubMed  Google Scholar 

  • Dhalla NS, Gupta KC, Sastry MS, Malhotra CL. 1961a. Comparative studies on Withania somnifera Dunal and Withania Ashwagandha Kaul. Indian J. Pharm. 23: 26–127

    Google Scholar 

  • Dhalla NS, Sastry MS, Malhotra CL. 1961b. Chemical studies of the Withania somnifera. J. Pharm. Sci. 50: 876–877

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15

    Google Scholar 

  • Fugang R, Bao-Rong L, Shaoqing L, Jingyu H, Yingguo Z. 2003. A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theor. Appl. Genet. 108: 113–120

    Article  Google Scholar 

  • Garcia-Vallve S, Palau J, Romeu A. 1999. Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Mol. Biol. Evol. 16: 1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Gurudeeban S, Ramanathan T, Satyavani K, Dhinesh T. 2011. Standardization of DNA isolation and PCR protocol for RAPD analysis of Suaeda sp. Asian J. Biotechnol. 3: 486–492

    Article  CAS  Google Scholar 

  • Halward T, Stalker T, Larue E, Kochert G. 1992. Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol, Biol, 18(2): 315–325

    Article  CAS  Google Scholar 

  • Hoisington D, Listman GM, Morris ML. 1998. Varietal development: applied biotechnology, In ML Morris, ed, Maize Seed Industries in Developing Countries. Lynne Rienner Publishers, Inc., Boulder, pp 77–102

    Google Scholar 

  • Huff DR, Peakall R, Smouse PE. 1993. RAPD variation within and among natural populations of outcrossing buffalo-grass Buchloe dactyloides (Nutt.) Engelm. Theor. Appl. Genet. 86: 927–934

    Article  CAS  PubMed  Google Scholar 

  • Jayaprakasam B, Zhang Y, Seeram N, Nair M. 2003. Growth inhibition of tumor cell lines by withanolides from Withania somnifera leaves. Life Sci. 74(1): 125–132

    Article  CAS  PubMed  Google Scholar 

  • Kaul MK, Kumar A, Ahuja A, Mir BA, Suri KA, Qazi GN. 2009. Production dynamics of withaferin A in Withania somnifera (L.) Dunal complex. Nat. Prod. Res. 23: 1304–1311

    Article  CAS  PubMed  Google Scholar 

  • Khajuria RK, Suri KA, Gupta RK, Satti NK, Amina M, Suri OP, Qazi GN. 2004. Separation, identification and quantification of selected withanolides in plant extracts of Withania somnifera by HPLC-UV(DAD) — Positive ion electrospray ionization-mass spectrometry. J. Sep. Sci. 27: 541–546

    Article  CAS  PubMed  Google Scholar 

  • Khanna KL. 1963. An investigation of the alkaloids of Withania somnifera. Ph.D. Thesis. University of Connecticut, Storrs

    Google Scholar 

  • Mackill DJ. 1995. Classifying japonica rice cultivars using RAPD markers. Crop Sci. 35: 889–894

    Article  CAS  Google Scholar 

  • Majumdar DN. 1955. Withania somnifera Dunal, Part II, Alkaloidal constituents and their chemical characterization. Indian J. Pharm. 17: 158–161

    CAS  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD. 1991. Rapid identification of markers linked to Pseudomonas resistance gene in tomato by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828–9832

    Article  Google Scholar 

  • Matsuda H, Murakami T, Kishi A, Yoshikawa M. 2001. Structures of withanosides I, II, III, IV, V, VI and VII new withanolide glycosides from the roots of Indian Withania somnifera D and inhibitory activity for tachyphylaxis to clonidine in isolated guineapig ileum. Bioorg. Med. Chem. 96: 1499–1507

    Article  Google Scholar 

  • Molinier J, Ries G, Zipfel C, Hohn B. 2006. Transgeneration memory of stress in plants. Nature 442: 1046–1049

    Article  CAS  PubMed  Google Scholar 

  • Panse VG, Sukhatme PV. 1985. Statistical methods for agricultural workers. Indian Council of Agricultural Research, New Delhi, India

    Google Scholar 

  • Reiter RS, Williams JGK, Feldman KA, Rafalski JA, Tingey SV, Scolnik PA. 1992. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc. Natl. Acad. Sci. USA 89: 1477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: A laboratory manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sharma R, Mahla HR, Mohpatra T, Bhargva SC, Sharma MM. 2003. Isolating plant genomic DNA without liquid nitrogen. Plant Mol. Biol. Rep. 21: 43–50

    Article  CAS  Google Scholar 

  • Singh S, Kumar S. 1998. Withania somnifera The Indian Ginseng Ashwagandha. Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India

    Google Scholar 

  • Smith JSC, Smith OS. 1989. Comparison of heterosis among hybrids as a measure of relatedness with that to be expected on the basis of pedigree. Maize Genet. Coop. Newsl. 63: 86–87

    Google Scholar 

  • Smith JSC, Smith OS. 1992. Fingerprinting crop varieties. Adv. Agron. 47: 85–140

    Article  CAS  Google Scholar 

  • Stuber CW. 1995. Mapping and manipulating quantitative traits in maize. Trends Genet. 11: 477–481

    Article  CAS  PubMed  Google Scholar 

  • Tatineni V, Cantrell RG, Davis DD. 1996. Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci. 36: 186–192

    Article  Google Scholar 

  • Tinker NA, Fortin MG, Mather DE. 1993. Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor. Appl. Genet. 85: 976–984

    Article  CAS  PubMed  Google Scholar 

  • Vierling RA, Nguyen HT. 1992. Use of RAPD markers to determine the genetic diversity of diploid, wheat genotypes. Theor. Appl. Genet. 84: 835–838

    CAS  PubMed  Google Scholar 

  • Weising K, Nybom H, Wolff K, Kahl G. 2005. DNA Fingerprinting in Plants: Principles, Methods and Applications, Ed 2, CRC Press, Boca Raton

    Book  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanna, P.K., Chandra, R., Kumar, A. et al. Correlation between morphological, chemical and RAPD markers for assessing genetic diversity in Withania somnifera (L.) Dunal. J. Crop Sci. Biotechnol. 17, 27–34 (2014). https://doi.org/10.1007/s12892-013-0104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-013-0104-8

Key words

Navigation