Skip to main content
Log in

Development of a mitochondrial DNA marker that distinguishes domestic dogs from Washington state gray wolves

  • Methods and Resources Article
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

We describe a primer pair that amplifies a 203 base pair fragment containing 4 single nucleotide polymorphisms (SNPs) within the cytochrome b region of the mitochondrial DNA that, when sequenced, conclusively distinguishes Washington state gray wolves from domestic dogs. The method is more efficient and cost-effective than other established methods for genetically distinguishing domestic dogs from gray wolves when using potentially degraded scat samples. Further testing may find that the SNP panel is also applicable to studies in Oregon, Idaho, Montana, and Wyoming, as these wolves belong to the same distinct population segment as Washington state gray wolves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Gish W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Björnerfeldt S, Webster MT, Vilà C (2006) Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res 16:990–994

    Article  Google Scholar 

  • Chambers SM, Fain SR, Fazio B, Amaral M (2012) An account of the taxonomy of North American wolves from morphological and genetic analyses. N Am Fauna 77:1–67

    Article  Google Scholar 

  • Ersmark E, Klütsch CF, Chan YL, Sinding M-HS, Fain SR, Illarionova NA, Oskarsson M, Uhlén M, Zhang Y-p, Dalén L (2016) From the past to the present: wolf phylogeography and demographic history based on the mitochondrial control region. Front Ecol Evol 4:134

    Article  Google Scholar 

  • Hendricks SA, Schweizer RM, Harrigan RJ, Pollinger JP, Paquet PC, Darimont CT, Adams JR, Waits LP, Hohenlohe PA, Wayne RK (2019) Natural re-colonization and admixture of wolves (Canis lupus) in the US Pacific Northwest: challenges for the protection and management of rare and endangered taxa. Heredity 122:133

    Article  CAS  Google Scholar 

  • Imes DL, Wictum EJ, Allard MW, Sacks BN (2012) Identification of single nucleotide polymorphisms within the mtDNA genome of the domestic dog to discriminate individuals with common HVI haplotypes. For Sci Int-Gen 6:630–639

    Article  CAS  Google Scholar 

  • Kim KS, Lee SE, Jeong HW, Ha JH (1998) The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol Phylogen Evol 10:210–220

    Article  CAS  Google Scholar 

  • Koblmüller S, Vilà C, Lorente-Galdos B, Dabad M, Ramirez O, Marques-Bonet T, Wayne RK, Leonard JA (2016) Whole mitochondrial genomes illuminate ancient intercontinental dispersals of grey wolves (Canis lupus). J Biogeogr 43:1728–1738

    Article  Google Scholar 

  • Leonard J, Vilá C, Wayne R (2005) Legacy Lost: Genetic variability and population size of extirpated US gray wolves. Mol Ecol 14:198–206

    Google Scholar 

  • Pang J-F, Kluetsch C, Zou X-J, Zhang A-b, Luo L-Y, Angleby H, Ardalan A, Ekström C, Sköllermo A, Lundeberg J (2009) mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Mol Biol Evol 26:2849–2864

    Article  CAS  Google Scholar 

  • Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    Article  CAS  Google Scholar 

  • Smalling BB, Satkoski JA, Tom BK, Szeto WY, Erickson B, Spear T, Smith D, Budowle B, Webb K, Allard M (2010) Geographic differences in mitochondrial DNA (mtDNA) distribution among United States (US) domestic dog populations. Open Foren Sci J 3:22–32

    Article  CAS  Google Scholar 

  • Stansbury CR, Ausband DE, Zager P, Mack CM, Waits LP (2016) Identifying gray wolf packs and dispersers using noninvasive genetic samples. J Wildl Manage 80:1408–1419

    Article  Google Scholar 

  • Strakova A, Leathlobhair MN, Wang G-D, Yin T-T, Airikkala-Otter I, Allen JL, Allum KM, Bansse-Issa L, Bisson JL, Domracheva AC (2016) Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer. Elife 5:e14552

    Article  Google Scholar 

  • Tamura K, Stetcher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis (MEGA) version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK, Greenfield D, Germonpré M, Sablin M, López-Giráldez F, Domingo-Roura X (2013) Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342:871–874

    Article  CAS  Google Scholar 

  • Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689

    Article  Google Scholar 

  • Vilà C, Amorim IR, Leonard JA, Posada D, Castroviejo J, Petrucci-Fonseca F, Crandall KA, Ellegren H, Wayne RK (1999) Mitochondrial DNA phylogeography and population history of the gray wolf Canis lupus. Mol Ecol 8:2089–2103

    Article  Google Scholar 

  • Vilà C, Seddon J, Ellegren H (2005) Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends Genet 21:214–218

    Article  Google Scholar 

  • vonHoldt BM, Pollinger JP, Lohmueller KE et al (2010) Genome-wide SNP and haplotype analyses reveal a rich history of underlying dog domestication. Nature 464:898–903

    Article  CAS  Google Scholar 

  • Vynne C, Baker MR, Breuer ZK, Wasser SK (2012) Factors influencing degradation of DNA and hormones in maned wolf scat. Anim Conserv 15:184–194

    Article  Google Scholar 

  • Waples RS, Kays R, Fredrickson RJ, Pacifici K, Mills LS (2018) J Hered 109:585–597

    Article  Google Scholar 

  • Wasser SK, Houston CS, Koehler GM, Cadd GG, Fain SR (1997) Techniques for application of faecal DNA methods to field studies of Ursids. Mol Ecol 6:1091–1097

    Article  CAS  Google Scholar 

  • Wasser SK, Davenport B, Ramage ER, Hunt KE, Parker M, Clarke C, Stenhouse G (2004) Scat detection dogs in wildlife research and management: applications to grizzly and black bears in the Yellowhead Ecosystem, Alberta, Canada. Can J Zool 82:475–492

    Article  Google Scholar 

  • Wasser SK, Keim JL, Taper ML, Lele SR (2011) The influences of wolf predation, habitat loss and human activity on caribou and moose in the Alberta oil sands. Front Ecol Env 9:546–551

    Article  Google Scholar 

  • Wayne RK, Lehman N, Allard MW, Honeycutt RL (1992) Mitochondrial DNA variability of the gray wolf: genetic consequences of population decline and habitat fragmentation. Conserv Biol 6:559–569

    Article  Google Scholar 

  • Webb KM, Allard MW (2009) Mitochondrial genome DNA analysis of the domestic dog: identifying informative SNPs outside of the control region. J Foren Sci 54:275–288

    Article  CAS  Google Scholar 

  • Witt KE, Malhi RS (2014) Ancient domestic dog diversity in the Americas: A mitochondrial DNA analysis of pre-European contact dogs. Am J Phys Anthropol 153:276–276

    Google Scholar 

  • Witt KE, Judd K, Kitchen A, Grier C, Kohler TA, Ortman SG, Kemp BM, Malhi RS (2015) DNA analysis of ancient dogs of the Americas: identifying possible founding haplotypes and reconstructing population histories. J Hum Evol 79:105–118

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Conservation Canine dog teams for their collection of scats used in this study. Positive control tissue samples were provided by the Burke Museum of Natural History and Washington Department of Wildlife. Jennifer White, Yue Shi, Yves Hoareau, Ada Kaliszewska, Tara Wilson, HJ Kim, Will Sano, Laura Prugh, Peter Mahoney, Tristan Nuñez, Taylor Ganz, and Mira Sytsma provided comments on the manuscript. Funding for this work was provided by the Maritz Family Foundation, the Dawkins Charitable Trust and the Arthur L. and Elaine V. Johnson Foundation. This manuscript is dedicated to Tuppence, the childhood dog of Ellen Reese.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel K. Wasser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12686_2020_1130_MOESM1_ESM.pdf

Supplementary file1 The Washington State gray wolf CanidSNP haplotype compared to those of domestic dog, coyote and red fox, with mitochondrial nucleotide positions of the gray wolf SNPs shown in bold and position within the mitochondrial genome shown by base pair number (top). The elk haplotype is included to reference the expected amplicon with this primer pair in cases where canid DNA is not present. Wolf, dog, coyote, and red fox haplotypes were determined from alignments available on GenBank (see Table S1), whereas the elk haplotypes were determined from scat sequences obtained during this study (accession numbers pending) (PDF 423 kb)

Supplementary file2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reese, E.M., Winters, M., Booth, R.K. et al. Development of a mitochondrial DNA marker that distinguishes domestic dogs from Washington state gray wolves. Conservation Genet Resour 12, 497–501 (2020). https://doi.org/10.1007/s12686-020-01130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-020-01130-2

Keywords

Navigation