Skip to main content
Log in

Copper(II) and Cobalt(II) Tridentate Complexes on Modified Graphene Oxide as Electrochemical Biosensors for Simultaneously Detecting Biomolecules

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Two novel coordination compounds, [Cu(L)Cl2] and [Co(L)Cl2] (L= 4-(6-hydroxy-phenyl)-2,6-di(thiazol-2-yl) pyridine), are successfully synthesized. The structure of the compounds was verified by instrumental techniques, including ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and mass spectrometry. The graphene oxide, previously modified by spontaneous coupling of diazonium salt of 4-amino benzoic acid, was covalently bound with [Cu(L)Cl2] and [Co(L)Cl2] compounds. The covalent attachment of the metallic complexes to the graphene oxide was confirmed by Fourier transform infrared spectroscopy and cyclic voltammetry. Functionalized surfaces through metallic coordination compounds showed catalytic reactivity to individual electrochemical oxidation of ascorbic acid, dopamine, and uric acid as revealed by the enhancement in the anodic peak current and the shifted oxidation peak potentials of each three analytes in comparison to the plain glassy carbon and graphene oxide. The resulting electrodes were shown to be utilized for the simultaneous detection of ascorbic acid, dopamine, and uric acid due to the appearance of the well-separated and resolved three different anodic peaks. The sensitivity of both modified electrodes for each biological compound was tested within the linear range of 2 to 15 µM for ascorbic acid, 0.2 to 3 µM for dopamine and uric acid, and the limit of detection values for ascorbic acid, dopamine, and uric acid are found to be 1.84 µM, 0.41 µM, and 0.32 µM, respectively for [Cu(L)Cl2] and 1.94 µM, 0.33 µM, and 0.52 µM for [Co(L)Cl2]. Furthermore, constructed electrochemical sensor platforms exhibited decent stability, selectivity, and reproducibility for the simultaneous detection of target biomolecules.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Mao, C. Ji, M. Liu, Y. Sun, D. Liu, S. Wu, Y. Zhang, X.-M. Song, RSC Advances 6, 111632 (2016)

  2. F. Yang, J. Wang, Y. Cao, L. Zhang, X. Zhang, Sensors and Actuators B: Chemical 205, 20 (2014)

    Article  CAS  Google Scholar 

  3. S. Zhang, F. Xu, Z.Q. Liu, Y.S. Chen, Y.L. Luo, Nanotechnology 31, 085503 (2019)

  4. L.R. Engelking, Chapter 39 - Vitamin C, Textbook of Veterinary Physiological Chemistry, 3rd edn. (Academic Press, Boston, 2015), pp. 254–259

    Book  Google Scholar 

  5. R.B. Rucker, F. Steinberg, Encyclopedia of Biological Chemistry, 1st edn. (Elsevier, New York, 2004), pp. 367–371

    Book  Google Scholar 

  6. J.D. Elsworth, R.H. Roth, Dopamine, in Encyclopedia of Neuroscience, 1st edn., ed. by L.R. Squire (Academic Press, Oxford, 2009), pp. 539–547

    Chapter  Google Scholar 

  7. M. Bonello, C. Ronco, CHAPTER 69 - Acute renal failure in oncological disorders and tumor lysis syndrome, in C. Ronco, R. Bellomo, J.A. Kellum, Critical Care Nephrology, 2. Edition, (W.B. Saunders, Philadelphia, 2009), pp. 379-384)

  8. A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, Analyst 134, 1692 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. P. Uutela, R. Reinilä, K. Harju, P. Piepponen, R.A. Ketola, R. Kostiainen, Anal. Chem. 81, 8417 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. P. Dutta, R.B. Pernites, C. Danda, R.C. Advincula, Mac. Mol. Chem and Phys. 212, 2439 (2011)

    Article  CAS  Google Scholar 

  11. L. Zhang, C. Liu, Q. Wang, X. Wang, S. Wang, Microchim. Acta 87, 149 (2020)

    Article  Google Scholar 

  12. Y. Teng, X. Jia, J. Li, E. Wang, Anal. Chem. 87, 4897 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. J. Gao, P. He, T. Yang, L. Zhou, X. Wang, S. Chen, H. Lei, H. Zhang, B. Jia, J. Liu, J. Electroanal. Chem. 852, 113516 (2019)

  14. L. Yang, N. Huang, Q. Lu, M. Liu, H. Li, Y. Zhang, S. Yao, Anal. Chim. Acta 903, 69 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. A.K. Baytak, M. Aslanoglu, Arab. J. Chem. 13, 1702 (2020)

    Article  CAS  Google Scholar 

  16. H. Öztürk Doğan, B. Kurt Urhan, E. Çepni, M. Eryiğit, Microchem. J. 150, 104157 (2019)

  17. T. Iranmanesh, M.M. Foroughi, S. Jahani, M. Shahidi Zandi, H. Hassani Nadiki, Talanta 207, 120318 (2020)

  18. A. Arroquia, I. Acosta, M.P.G. Armada, Mater. Sci. Eng. C 109, 110602 (2020)

  19. K. Cammann, Fresenius’ Zeitschrift. Analytische Chemie 287, 1 (1977)

    Article  CAS  Google Scholar 

  20. S.I. Kaya, S. Kurbanoglu, S.A. Ozkan, Crit. Rev. Anal. Chem 49, 101 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. D. Li, M. Liu, Y. Zhan, Q. Su, Y. Zhang, D. Zhang, Microchim. Acta 187, 94 (2020)

    Article  CAS  Google Scholar 

  22. H. Wang, F. Ren, C. Wang, B. Yang, D. Bin, K. Zhang, Y. Du, RSC Adv. 4, 26895 (2014)

    Article  CAS  Google Scholar 

  23. C. Tan, J. Zhao, P. Sun, W. Zheng, G. Cui, New J. Chem. 44, 4916 (2020)

    Article  CAS  Google Scholar 

  24. S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, RSC Adv. 9, 8778 (2019)

    Article  CAS  Google Scholar 

  25. E. Singh, M. Meyyappan, H.S. Nalwa, A.C.S. Appl, Mater. Interfaces 9, 34544 (2017)

    Article  CAS  Google Scholar 

  26. S. Krishnan, L. Tong, S. Liu, R. Xing, Microchim. Acta 187, 82 (2020)

    Article  CAS  Google Scholar 

  27. E. Nagles, O. García-Beltrán, J.A. Calderón, Electrochim. Acta 258, 512 (2017)

    Article  CAS  Google Scholar 

  28. B. Xu, Q. Song, H. Wang, Anal. Method 5, 2335 (2013)

    Article  CAS  Google Scholar 

  29. A. Savk, B. Özdil, B. Demirkan, M.S. Nas, M.H. Calimli, M.H. Alma, Inamuddin, A.M. Asiri, F. Şen, Mat. Sci. Eng. C 99, 248 (2019)

  30. M. Kumar, M. Wang, B.E. Kumara Swamy, M. Praveen, W. Zhao, Colloid Surf. B: Biointerfaces 196, 111299 (2020)

  31. M. Shahbakhsh, M. Noroozifar, J. Solid State Electrochem. 22, 3049 (2018)

    Article  CAS  Google Scholar 

  32. C.-S. Lee, S.H. Yu, T.H. Kim, Nanomaterials (Basel) 8, 17 (2017)

    Article  PubMed Central  Google Scholar 

  33. K. Zhang, N. Zhang, L. Zhang, H. Wang, H. Shi, Q. Liu, RSC Adv. 8, 5280 (2018)

    Article  CAS  Google Scholar 

  34. N. Tukimin, J. Abdullah, Y. Sulaiman, J. Electroanal. Chem. 820, 74 (2018)

    Article  CAS  Google Scholar 

  35. S. Li, Y. Ma, Y. Liu, G. Xin, M. Wang, Z. Zhang, Z. Liu, RSC Adv. 9, 2997 (2019)

    Article  CAS  Google Scholar 

  36. M. Wang, M. Zhang, J. Zhu, J. Wang, L. Hu, T. Sun, M. Wang, Y. Tang, Microchim. Acta 7, 1373 (2020)

    CAS  Google Scholar 

  37. N. Hassanzadeh, H.R. Zare-Mehrjardi, Int. J. Electrochem. Sci. 3950 (2017)

  38. K. Ghanbari, S. Bonyadi, J. Electrochem. Sci. Tech. 11, 68 (2020)

    Article  CAS  Google Scholar 

  39. J. Zhou, M. Sheng, X. Jiang, G. Wu, F. Gao, Sensors (Basel) 13, 14029 (2013)

    Article  CAS  Google Scholar 

  40. G.A. Tığ, J. Electroanal. Chem. 807, 19 (2017)

    Article  Google Scholar 

  41. M. Wang, M. Cui, W. Liu, X. Liu, J. Electroanal. Chem. 832, 174 (2019)

    Article  CAS  Google Scholar 

  42. Q. Wang, H. Sun, Q. Liu, L. Li, J. Kong, J. Electrochem 5, 1288 (2020)

    CAS  Google Scholar 

  43. K. Kunpatee, S. Traipop, O. Chailapakul, S. Chuanuwatanakul, Sensor Actuators B: Chem. 314, 128059 (2020)

  44. B.S. Mounesh, M. Jilani, K.R.V. Pari, K.S. Reddy, Lokesh. Microchem. J. 147, 755 (2019)

    Article  CAS  Google Scholar 

  45. S. Yan, X. Li, Y. Xiong, M. Wang, L. Yang, X. Liu, X. Li, L.A.M. Alshahrani, P. Liu, C. Zhang, Microchim. Acta 183, 1401 (2016)

    Article  CAS  Google Scholar 

  46. M. Wang, X. Xu, J. Gao, J. Applied Electrochem. 37, 705 (2007)

    Article  CAS  Google Scholar 

  47. A. Gopal, J. Nanomed. & Nanotech. 6, 1000253 (2015)

    Google Scholar 

  48. L. Shahriary, A. Athawale, Renew. Energy Environ. Eng. 2 (2014)

  49. V. Rebuttini, E. Fazio, S. Santangelo, F. Neri, G. Caputo, C. Martin, T. Brousse, F. Favier, N. Pinna, Chem A Euro. J. 21, 12465 (2015)

    Article  CAS  Google Scholar 

  50. P. d’Ambrosio, M. Carchesio, N. d’Alessandro, G. de la Torre, T. Torres, Dalton Trans. 43, 7473 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, ACS Nano 4, 5633 (2010)

    Article  CAS  PubMed  Google Scholar 

  52. A. Maroń, S. Kula, A. Szlapa-Kula, A. Świtlicka, B. Machura, S. Krompiec, J.G. Małecki, R. Kruszyński, A. Chrobok, E. Schab-Balcerzak, S. Kotowicz, M. Siwy, K. Smolarek, S. Maćkowski, H. Janeczek, M. Libera, Euro. J. Org. Chem. 2017, 2730 (2017)

    Article  Google Scholar 

  53. G.-Y. Li, K.-J. Du, J.-Q. Wang, J.-W. Liang, J.-F. Kou, X.-J. Hou, L.-N. Ji, H. Chao, J. Inorg. Biochem. 119, 43 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. K. Czerwińska, B. Machura, S. Kula, S. Krompiec, K. Erfurt, C. Roma-Rodrigues, A.R. Fernandes, L.S. Shul’pina, N.S. Ikonnikov, G.B. Shul’pin, Dalton Trans. 46, 959 (2017)

    Google Scholar 

  55. T. Klemens, A. Świtlicka, B. Machura, S. Kula, S. Krompiec, K. Łaba, M. Korzec, M. Siwy, H. Janeczek, E. Schab-Balcerzak, M. Szalkowski, J. Grzelak, S. Maćkowski, Dyes and Pigments 163, 86 (2019)

    Article  CAS  Google Scholar 

  56. T. Klemens, K. Czerwińska, A. Szlapa-Kula, S. Kula, A. Świtlicka, S. Kotowicz, M. Siwy, K. Bednarczyk, S. Krompiec, K. Smolarek, S. Maćkowski, W. Danikiewicz, E. Schab-Balcerzak, B. Machura, Dalton Trans. 46, 9605 (2017)

    Article  CAS  PubMed  Google Scholar 

  57. M. Ciszewski, A. Mianowski, G. Nawrat, P. Szatkowski, , ISRN Electrochem. 2014, 826832 (2014)

  58. D. He, Z. Peng, W. Gong, Y. Luo, P. Zhao, L. Kong, RSC Adv. 5, 11966 (2015)

    Article  CAS  Google Scholar 

  59. H. Yang, C. Shan, F. Li, D. Han, Q. Zhang, L. Niu, Chem. Commun. 2009, 3880 (2009)

  60. N.-N. Song, Y.-Z. Wang, X.-Y. Yang, H.-L. Zong, Y.-X. Chen, Z. Ma, C.-X. Chen, J. Electroanal. Chem. 873, 114352 (2020)

  61. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, Y. Chen, Adv. Mat. 21, 1275 (2009)

    Article  CAS  Google Scholar 

  62. M. Aslanoglu, A. Kutluay, S. Abbasoglu, S. Karabulut, Chem. Pharm. Bull. 56, 282 (2008)

    Article  CAS  Google Scholar 

  63. K. Deng, X. Li, H. Huang, Microchim. Acta 183, 2139 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors received financial support from Zonguldak Bülent Ecevit University under the project (Project Number: 2020-72118496-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İzzet Koçak.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekdemir, F., Koçak, İ. & Şengül, A. Copper(II) and Cobalt(II) Tridentate Complexes on Modified Graphene Oxide as Electrochemical Biosensors for Simultaneously Detecting Biomolecules. Electrocatalysis 13, 126–138 (2022). https://doi.org/10.1007/s12678-022-00706-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00706-w

Keywords

Navigation