Skip to main content
Log in

Oxygen Reduction Reaction on Metal and Nitrogen–Doped Carbon Electrocatalysts in the Presence of Sodium Borohydride

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Metal and nitrogen–doped carbon electrocatalysts (M–N–C, where M is Fe or Co) were investigated for the oxygen reduction reaction (ORR) in alkaline conditions in the presence of borohydride ions (BH4). The electrochemical properties of the Fe–N–C and Co–N–C catalysts were investigated by cyclic voltammetry and rotating disk electrode techniques: their ORR electrocatalytic activity was bridged to their physicochemical properties, mainly type of metallic center (Fe vs. Co), structure (atomic dispersion vs. nanoparticles), and BET surface area. It is found that Fe–N–C catalysts have the best performances for the ORR electrocatalysis, even in the presence of BH4 anions. The atomically dispersed Fe- and Co-containing electrocatalysts reach better BH4-tolerance than their counterparts baring nanoparticles. For the atomically dispersed Fe–N–C electrocatalysts, the lowest BET surface area material generates a slight advantage of ORR mass activity and a poor (and desired) activity for borohydride oxidation reaction (BOR).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.B. Reddy, D. Linden, Linden's Handbook of Batteries, 4th edn. (McGraw-Hill Professional, New York, 2010)

  2. W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology and Applications (Wiley, Chichester, 2003)

    Google Scholar 

  3. S. Wasmus, A. Küver, Methanol oxidation and direct methanol fuel cells: a selective review. J. Electroanal. Chem. 461(1-2), 14–31 (1999)

    Article  CAS  Google Scholar 

  4. W. Vielstich, H.A. Gasteiger, H. Yokokawa, Handbook of fuel fells: Fundamentals, technology and applications (Wiley, Chichester, 2009)

  5. J.S. Spendelow, A. Wieckowski, Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9(21), 2654–2675 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. J.H. Wee, Which type of fuel cell is more competitive for portable application: direct methanol fuel cells or direct borohydride fuel cells? J. Power Sources 161(1), 1–10 (2006)

    Article  CAS  Google Scholar 

  7. U.B. Demirci, Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J. Power Sources 169(2), 239–246 (2007)

    Article  CAS  Google Scholar 

  8. S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman, M. Binder, A novel high power density borohydride-air cell. J. Power Sources 84(1), 130–133 (1999)

    Article  CAS  Google Scholar 

  9. C. Kim, K.-J. Kim, M.Y. Ha, Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications. J. Power Sources 180(1), 114–121 (2008)

    Article  CAS  Google Scholar 

  10. B.H. Liu, Z.P. Li, Current status and progress of direct borohydride fuel cell technology development. J. Power Sources 187(2), 291–297 (2009)

    Article  CAS  Google Scholar 

  11. J. Ma, N.A. Choudhury, Y. Sahai, A comprehensive review of direct borohydride fuel cells. Renew. Sust. Energ. Rev. 14(1), 183–199 (2010)

    Article  CAS  Google Scholar 

  12. G. Rostamikia, M.J. Janik, Direct borohydride oxidation: mechanism determination and design of alloy catalysts guided by density functional theory. Energy Environ. Sci. 3(9), 1262–1274 (2010)

    Article  CAS  Google Scholar 

  13. M. Chatenet, M.B. Molina-Concha, J.-P. Diard, First insights into the borohydride oxidation reaction mechanism on gold by electrochemical impedance spectroscopy. Electrochim. Acta 54(6), 1687–1693 (2009)

  14. D.A. Finkelstein, N. Da Mota, J.L. Cohen, H.D. Abruña, Rotating disk electrode (RDE) investigation of BH4- and BH3OH- electro-oxidation at Pt and Au: implications for BH4- fuel cells. J. Phys. Chem. C 113(45), 19700–19712 (2009)

    Article  CAS  Google Scholar 

  15. B. M. Concha, M. Chatenet, E.A. Ticianelli, F.H.B. Lima, In situ infrared (FTIR) study of the mechanism of the borohydride oxidation reaction on smooth Pt electrode. J. Phys. Chem. C 115(25), 12439–12447 (2011)

  16. P.-Y. Olu, A. Bonnefont, M. Rouhet, S. Bozdech, N. Job, M. Chatenet, E. Savinova, Insights into the potential dependence of the borohydride electrooxidation reaction mechanism on platinum nanoparticles supported on ordered carbon nanomaterials. Electrochim. Acta 179, 637–646 (2015)

  17. M.C.S. Escaño, R.L. Arevalo, E. Gyenge, H. Kasai, Electrocatalysis of borohydride oxidation: a review of density functional theory approach combined with experimental validation. J. Phys, Condens. Matter 26(35), (2014)

  18. P.-Y. Olu, A. Bonnefont, M. Chatenet, "Borohydride Oxidation Reaction (BOR) at Pt and Au electrodes: From experimental insights to mechanism and kinetic modeling". In Encyclopedia Interfacial Chemistry: Surface Science and Electrochemistry, K. Wandelt (Ed.). (Elsevier, 2018), pp. 384–392

  19. P.-Y. Olu, A. Zadick, N. Job, M. Chatenet, "Anode Electrocatalysts for Direct Borohydride and Direct Ammonia Borane Fuel Cells". In Electrocatalysts for Low Temperature Fuel Cells: Fundamentals and Recent Trends, T. Maiyalagan, V. S. Saji (Eds.). (Wiley, 2017), pp. 317–346

  20. I. Merino-Jiménez, C. Ponce De León, A.A. Shah, F.C. Walsh, Developments in direct borohydride fuel cells and remaining challenges. J. Power Sources 219, 339–357 (2012)

    Article  CAS  Google Scholar 

  21. K.S. Freitas, B.M. Concha, E.A. Ticianelli, M. Chatenet, Mass transport effects in the borohydride oxidation reaction—influence of the residence time on the reaction onset and faradaic efficiency. Catal. Today 170(1), 110–119 (2011)

    Article  CAS  Google Scholar 

  22. S. Suda. "Aqueous borohydride solutions". In Handbook of Fuel Cells - Fundamentals, Technology and Applications, W. Vielstich, A. Lamm, H. A. Gasteiger (Eds.). (Wiley, Chichester, 2003), pp. 115–120

  23. C. Ponce De León, F. C. Walsh, "Direct and indirect borohydride fuel cells". In Reference Module in Chemistry: Molecular Sciences and Chemical Engineering (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-409547-2.11190-4

  24. Z. Wang, J. Parrondo, C. He, S. Sankarasubramanian, V. Ramani, Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells. Nat. Energy 4, 281–289 (2019)

    Article  CAS  Google Scholar 

  25. M. Chatenet, Tailoring membranes. Nat. Energy 4, 261–262 (2019)

    Article  Google Scholar 

  26. S. Ould-Amara, J. Dillet, S. Didierjean, M. Chatenet, G. Maranzana, Operating heterogeneities within a direct borohydride fuel cell. J. Power Sources 439, 227099 (2019)

    Article  CAS  Google Scholar 

  27. K. N. Mochalov, V. S. Khain, G. G. Gil'manshin, A generalized scheme for the hydrolysis of the borohydride ion and diborane. Dokl. Akad. Nauk SSSR 162(3), 613–616 (1965)

  28. M.M. Kreevoy, R.W. Jacobson, The rate of decomposition of NaBH4 in basic aqueous solutions. Vent. Alembic 15, 2–3 (1979)

  29. D. Sebastián, A. Serov, I. Matanovic, K. Artyushkova, P. Atanassov, A.S. Aricò, V. Baglio, Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy 34, 195–204 (2017)

    Article  CAS  Google Scholar 

  30. K.B. Ma, D.H. Kwak, S.B. Han, H.S. Park, D.H. Kim, J.E. Won, S.H. Kwon, M.C. Kim, S.H. Moon, K.W. Park, Direct ethanol fuel cells with superior ethanol-tolerant nonprecious metal cathode catalysts for oxygen reduction reaction. ACS Sustain. Chem. Eng. 6(6), 7609–7618 (2018)

    Article  CAS  Google Scholar 

  31. L. Osmieri, R. Escudero-Cid, A.H.A. Monteverde Videla, P. Ocón, S. Specchia, Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell. Renew. Energy 115, 226–237 (2018)

    Article  CAS  Google Scholar 

  32. A.C. Garcia, J.J. Linares, M. Chatenet, E.A. Ticianelli, NiMnOx/C: a non-noble ethanol-tolerant catalyst for oxygen reduction in alkaline exchange membrane DEFC. Electrocatalysis 5, 41–49 (2014)

    Article  CAS  Google Scholar 

  33. E. A. Ticianelli, F. H. B. Lima, "Nanostructured Electrocatalysts for Methanol and Ethanol-Tolerant Cathodes". In Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications, H. R. Corti, E. R. Gonzalez (Eds.). (Springer, 2014), pp. 99–119

  34. X. Yang, S. Li, Y. Liu, X. Wei, Y. Liu, LaNi0.8Co0.2O3 as a cathode catalyst for a direct borohydride fuel cell. J. Power Sources 196(11), 4992–4995 (2011)

  35. M. Chatenet, F. Micoud, I. Roche, E. Chainet, J. Vondrák, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part II. O2 reduction. Electrochim. Acta 51(25), 5452–5458 (2006)

    Article  CAS  Google Scholar 

  36. A.C. Garcia, F.H.B. Lima, E.A. Ticianelli, M. Chatenet, Carbon-supported nickel-doped manganese oxides as electrocatalysts for the oxygen reduction reaction in the presence of sodium borohydride. J. Power Sources 222, 305–312 (2013)

    Article  CAS  Google Scholar 

  37. I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium. J. Appl. Electrochem. 38, 1195–1201 (2008)

    Article  CAS  Google Scholar 

  38. H. Cheng, K. Scott, Investigation of non-platinum cathode catalysts for direct borohydride fuel cells. J. Electroanal. Chem. 596(2), 117–123 (2006)

    Article  CAS  Google Scholar 

  39. M. Chatenet, F. Micoud, I. Roche, E. Chainet, Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte: Part I. BH4- electro-oxidation on Au and Ag catalysts. Electrochim. Acta 51(25), 5459–5467 (2006)

    Article  CAS  Google Scholar 

  40. M.H. Atwan, D.O. Northwood, E.L. Gyenge, Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells. Int. J. Hydrog. Energy 32(15), 3116–3125 (2007)

    Article  CAS  Google Scholar 

  41. A.V. N. Kumar, S. Harish, J. Joseph, New route for synthesis of electrocatalytic Ni(OH)2 modified electrodes—electrooxidation of borohydride as probe reaction. Bull. Mater. Sci. 37, 635–641 (2014)

  42. D.M.F. Santos, B. Šljukić, L. Amaral, D. Macciò, A. Saccone, C.A.C. Sequeira, Nickel and nickel-cerium alloy anodes for direct borohydride fuel cells. J. Electrochem. Soc. 161(5), F594-F599 (2014)

  43. A.G. Oshchepkov, G. Braesch, S. Ould-Amara, G. Rostamikia, G. Maranzana, A. Bonnefont, V. Papaefthimiou, M.J. Janik, M. Chatenet, E.R. Savinova, Nickel metal nanoparticles as anode electrocatalysts for highly efficient direct borohydride fuel cells. ACS Catal. 9(9), 8520–8528 (2019)

    Article  CAS  Google Scholar 

  44. A. Serov, A. Aziznia, P.H. Benhangi, K. Artyushkova, P. Atanassov, E. Gyenge, Borohydride-tolerant oxygen electroreduction catalyst for mixed-reactant Swiss-roll direct borohydride fuel cells. J. Mater. Chem. A 1(45), 14384–14391 (2013)

    Article  CAS  Google Scholar 

  45. M. Lefèvre, E. Proietti, F. Jaouen, and J.-P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324 (5923), 71–74 (2009)

  46. A. Serov, K. Artyushkova, E. Niangar, C. Wang, N. Dale, F. Jaouen, M.T. Sougrati, Q. Jia, S. Mukerjee, P. Atanassov, Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy 16, 293–300 (2015)

    Article  CAS  Google Scholar 

  47. F. Luo, C.H. Choi, M.J.M. Primbs, W. Ju, S. Li, N.D. Leonard, A. Thomas, F. Jaouen, P. Strasser, Accurate evaluation of active-site density (SD) and turnover frequency (TOF) of PGM-free metal–nitrogen-doped carbon (MNC) electrocatalysts using CO cryo adsorption. ACS Catal. 9(6), 4841–4852 (2019)

    Article  CAS  Google Scholar 

  48. A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G. F. Harrington, S. M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, F. Jaouen, Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Comm. 8, 957 (2017).

  49. V. Armel, J. Hannauer, F. Jaouen, Effect of ZIF-8 crystal size on the O2 electro-reduction performance of pyrolyzed Fe–N–C catalysts. Catalysts 5(3), 1333–1351 (2015)

    Article  CAS  Google Scholar 

  50. C.H. Choi, H.K. Lim, M.W. Chung, G. Chon, N. Ranjbar Sahraie, A. Altin, M.T. Sougrati, L. Stievano, H.S. Oh, E.S. Park, F. Luo, P. Strasser, G. Dražić, K.J.J. Mayrhofer, H. Kim, F. Jaouen, The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy Environ. Sci. 11, 3176–3182 (2018)

    Article  CAS  Google Scholar 

  51. K. Kumar, P. Gairola, M. Lions, N. Ranjbar-Sahraie, M. Mermoux, L. Dubau, A. Zitolo, F. Jaouen, F. Maillard, Physical and chemical considerations for improving catalytic activity and stability of non-precious-metal oxygen reduction reaction catalysts. ACS Catal. 8(12), 11264–11276 (2018)

  52. V. Goellner, V. Armel, A. Zitolo, E. Fonda, F. Jaouen, Degradation by hydrogen peroxide of metal-nitrogen-carbon catalysts for oxygen reduction. J. Electrochem. Soc. 162(6), H403–H414 (2015)

    Article  CAS  Google Scholar 

  53. A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14(9), 937–942 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. R. Sgarbi, K. Kumar, F. Jaouen, A. Zitolo, E. A. Ticianelli, and F. Maillard, Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M-N-C catalysts under alkaline and acidic conditions. J. Solid State Electrochem. (2019). https://doi.org/10.1007/s10008-019-04436-w

  55. J. Ma, X. Gao, D. Wang, T. Xue, S. Yang, Effect of cobalt precursors on Co3O4 anodic catalyst for a membrane-free direct borohydride fuel cell. J. Alloys Compd. 724, 474–480 (2017)

    Article  CAS  Google Scholar 

  56. A. Tiwari, V. Singh, T.C. Nagaiah, Non-noble cobalt tungstate catalyst for effective electrocatalytic oxidation of borohydride. ACS Appl. Mater. Interfaces 11(24), 21465–21472 (2019)

    Article  CAS  PubMed  Google Scholar 

  57. A. Garron, D. Świerczyński, S. Bennici, A. Auroux, New insights into the mechanism of H2 generation through NaBH4 hydrolysis on Co-based nanocatalysts studied by differential reaction calorimetry. Int. J. Hydrog. Energy 34(3), 1185–1199 (2009)

    Article  CAS  Google Scholar 

  58. J. Choi, J. Chung, Preparation and Characteristics of Novel Cobalt Oxide Catalysts for Hydrogen Generation from Metal Borohydride Solution. J. Energy Eng. 142(3), (2016)

  59. R. Edla, S. Gupta, N. Patel, N. Bazzanella, R. Fernandes, D.C. Kothari, A. Miotello, Enhanced H2 production from hydrolysis of sodium borohydride using Co3O4 nanoparticles assembled coatings prepared by pulsed laser deposition. Appl. Catal. A Gen. 515, 1–9 (2016)

    Article  CAS  Google Scholar 

  60. J. Hannauer, U.B. Demirci, C. Geantet, J.M. Herrmann, P. Miele, Enhanced hydrogen release by catalyzed hydrolysis of sodium borohydride-ammonia borane mixtures: a solution-state 11B NMR study. Phys. Chem. Chem. Phys. 13(9), 3809–3818 (2011)

Download references

Funding

This study was financially supported by the French National Research Agency through the CAT2CAT (grant number ANR-16-CE05-0007), MobiDiC (grant number ANR-16-CE05-0009) and ANIMA (grant number ANR-19-CE05-0039) projects. R.S. gratefully acknowledges the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (grant number: 1614344), CAPES/COFECUB program (grant numbers: 88887-187755/2018-00 and Ph-C 914/18) for funding his research stay at LEPMI and the São Paulo State Research Foundation (FAPESP—grant number: 2013/16930-7) for financial supports. Some material analyses have been performed within “CEMAM,” the Centre of Excellence of Multifunctional Architectured Materials (no. ANR-10-LABX-44-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frédéric Maillard or Marian Chatenet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sgarbi, R., Ticianelli, E.A., Maillard, F. et al. Oxygen Reduction Reaction on Metal and Nitrogen–Doped Carbon Electrocatalysts in the Presence of Sodium Borohydride. Electrocatalysis 11, 365–373 (2020). https://doi.org/10.1007/s12678-020-00602-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00602-1

Keywords

Navigation