Skip to main content
Log in

Baker’s Yeast-Mediated Silver Nanoparticles: Characterisation and Antimicrobial Biogenic Tool for Suppressing Pathogenic Microbes

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) were biosynthesised in the current work using cells extract from yeast strain (Saccharomyces cerevisiae) as a clean and good for the environment technique. UV–Vis, XRD, FTIR, TEM, and DLS were used to identify the biosynthesised AgNPs. The Ag particles had a spherical structure, with sizes ranging from 3 to 60 nm. Functional groups matching to metabolites of yeast cells are discovered in FTIR investigations on NPs reducing and stabilising the Ag nanoparticle. Biosynthesised AgNPs were tested for antimicrobial effectiveness versus pathogens. AgNPs showed interesting antimicrobial action towards pathogens (E. coli, P. aeruginosa, B. subtilis, S. aureus, and C. albicans) with a minimal inhibitory concentration (MIC) of AgNPs against S. aureus and C. albicans was 12.5 µg/mL, while was 25 µg/mL against E. coli, P. aeruginosa, and B. subtilis. Finally, the biosynthesised AgNPs derived from baker’s yeast cells show promise as a safe antibacterial agent towards microbes. The biosynthesised AgNPs formed using baker’s yeast cells have antibacterial properties, making them valuable in disease biocontrol and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Getahun, H., Smith, I., Trivedi, K., Paulin, S., & Balkhy, H. H. (2020). Tackling antimicrobial resistance in the COVID-19 pandemic. Bulletin of the World Health Organization, 98(7), 442.

    Article  Google Scholar 

  2. Hu, X.-Y., Logue, M., & Robinson, N. (2020). Antimicrobial resistance is a global problem–A UK perspective. European Journal of Integrative Medicine, 36, 101136.

    Article  Google Scholar 

  3. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., & Carmeli, Y. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3), 318–327.

    Article  Google Scholar 

  4. Chellat, M. F., Raguž, L., & Riedl, R. (2016). Targeting antibiotic resistance. Angewandte Chemie International Edition, 55(23), 6600–6626.

    Article  Google Scholar 

  5. Gottardo, S., Mech, A., Drbohlavova, J., Malyska, A., Bøwadt, S., Sintes, J. R., Rauscher, H. (2021). Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact, 100297.

  6. Eleraky, N. E., Allam, A., Hassan, S. B., & Omar, M. M. (2020). Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations. Pharmaceutics, 12(2), 142.

    Article  Google Scholar 

  7. Salem, S. S., Ali, O. M., Reyad, A. M., Abd-Elsalam, K. A., & Hashem, A. H. (2022). Pseudomonas indica-mediated silver nanoparticles: Antifungal and antioxidant biogenic tool for suppressing mucormycosis fungi. Journal of Fungi, 8(2), 126.

    Article  Google Scholar 

  8. Shehabeldine, A. M., Salem, S. S., Ali, O. M., Abd-Elsalam, K. A., Elkady, F. M., Hashem, A. H. (2022). Multifunctional silver nanoparticles based on chitosan: Antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. Journal of Fungi, 8(6). https://doi.org/10.3390/jof8060612

  9. Salem, S. S., Badawy, M. S. E. M., Al-Askar, A. A., Arishi, A. A., Elkady, F. M., & Hashem, A. H. (2022). Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 12(6), 893. https://doi.org/10.3390/life12060893

  10. Grasso, G., Zane, D., & Dragone, R. (2020). Microbial nanotechnology: Challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials, 10(1), 11.

    Article  Google Scholar 

  11. Hashem, A. H., Selim, T. A., Alruhaili, M. H., Selim, S., Alkhalifah, D. H. M., Al Jaouni, S. K., & Salem, S. S. (2022). Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. Journal of Functional Biomaterials, 13(3), 112. https://doi.org/10.3390/jfb13030112

  12. Salem, S. S., Hammad, E. N., Mohamed, A. A., El-Dougdoug, W. (2023). A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Research in Applied Chemistry, 13(1). https://doi.org/10.33263/BRIAC131.041

  13. Hashem, A. H., Shehabeldine, A. M., Ali, O. M., Salem, S. S. (2022). Synthesis of chitosan-based gold nanoparticles: Antimicrobial and wound-healing activities. Polymers, 14(11). https://doi.org/10.3390/polym14112293

  14. Hammad, E. N., Salem S. S., Mohamed, A., El-Dougdoug, W. (2022) Environmental impacts of ecofriendly iron oxide nanoparticles on dyes removal and antibacterial activity. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-022-04105-1

  15. Abdelaziz, A. M., Salem, S. S., Khalil, A. M. A., El-Wakil, D. A., Fouda, H. M., & Hashem, A. H. (2022). Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. BioMetals, 35(3), 601–616. https://doi.org/10.1007/s10534-022-00391-8

    Article  Google Scholar 

  16. Salem, S. S., & Fouda, A. (2021). Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research, 199(1), 344–370. https://doi.org/10.1007/s12011-020-02138-3

    Article  Google Scholar 

  17. Hashem, A. H., & Salem, S. S. (2021). Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal. https://doi.org/10.1002/biot.202100432

    Article  Google Scholar 

  18. Badawy, A. A., Abdelfattah, N. A. H., Salem, S. S., Awad, M. F., Fouda, A. (2021). Efficacy assessment of biosynthesized copper oxide nanoparticles (Cuo‐nps) on stored grain insects and their impacts on morphological and physiological traits of wheat (triticum aestivum l.) plant. Biology, 10(3). https://doi.org/10.3390/biology10030233

  19. Shaheen, T. I., Fouda, A., & Salem, S. S. (2021). Integration of cotton fabrics with biosynthesized CuO nanoparticles for bactericidal activity in the terms of their cytotoxicity assessment. Industrial and Engineering Chemistry Research, 60(4), 1553–1563. https://doi.org/10.1021/acs.iecr.0c04880

    Article  Google Scholar 

  20. Saied, E., Eid, A. M., Hassan, S. E. D., Salem, S. S., Radwan, A. A., Halawa, M., Saleh, F. M., Saad, H. A., Saied, E. M., Fouda, A. (2021). The catalytic activity of biosynthesized magnesium oxide nanoparticles (Mgo-nps) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts, 11(7). https://doi.org/10.3390/catal11070821

  21. Hammad, E. N., Salem, S. S., Zohair, M. M., Mohamed, A. A., & El-Dougdoug, W. (2022). Purpureocillium lilacinum mediated biosynthesis copper oxide nanoparticles with promising removal of dyes. Biointerface Research in Applied Chemistry, 12(2), 1397–1404. https://doi.org/10.33263/BRIAC122.13971404

    Article  Google Scholar 

  22. Salem, S. S., Husen, A. (2023). Chapter 14 - Effect of engineered nanomaterials on soil microbiomes and their association with crop growth and production. In: Husen A (ed) Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Academic Press, 311–336. https://doi.org/10.1016/B978-0-323-91933-3.00010-6

  23. Parra-Nieto, J., del Cid, M. A. G., de Cárcer, I. A., & Baeza, A. (2021). Inorganic porous nanoparticles for drug delivery in antitumoral therapy. Biotechnology Journal, 16(2), 2000150. https://doi.org/10.1002/biot.202000150

    Article  Google Scholar 

  24. Salem, S. S. (2022). Bio-fabrication of selenium nanoparticles using Baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Applied Biochemistry and Biotechnology, 194(5), 1898–1910. https://doi.org/10.1007/s12010-022-03809-8

    Article  Google Scholar 

  25. Syafiuddin, A., Salmiati, S. M. R., Beng Hong Kueh, A., Hadibarata, T., & Nur, H. (2017). A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. Journal of the Chinese Chemical Society, 64(7), 732–756. https://doi.org/10.1002/jccs.201700067

    Article  Google Scholar 

  26. Vigneswari, S., Amelia, T. S. M., Hazwan, M. H., Mouriya, G. K., Bhubalan, K., Amirul, A.-A.A., & Ramakrishna, S. (2021). Transformation of biowaste for medical applications: Incorporation of biologically derived silver nanoparticles as antimicrobial coating. Antibiotics, 10(3), 229.

    Article  Google Scholar 

  27. Al-Rajhi, A. M. H., Salem, S. S., Alharbi, A. A., Abdelghany, T. M. (2022). Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arabian Journal of Chemistry, 15(7). https://doi.org/10.1016/j.arabjc.2022.103927

  28. Sharaf, M. H., Nagiub, A. M., Salem, S. S., Kalaba, M. H., El Fakharany, E. M., & Abd El-Wahab, H. (2022). A new strategy to integrate silver nanowires with waterborne coating to improve their antimicrobial and antiviral properties. Pigment and Resin Technology. https://doi.org/10.1108/PRT-12-2021-0146

    Article  Google Scholar 

  29. Govindappa, M., Tejashree, S., Thanuja, V., Hemashekhar, B., Srinivas, C., Nasif, O., Pugazhendhi, A., & Raghavendra, V. B. (2021). Pomegranate fruit fleshy pericarp mediated silver nanoparticles possessing antimicrobial, antibiofilm formation, antioxidant, biocompatibility and anticancer activity. Journal of Drug Delivery Science and Technology, 61, 102289.

    Article  Google Scholar 

  30. Arif, R., & Uddin, R. (2021). A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Medical Devices & Sensors, 4(1), e10158.

    Article  Google Scholar 

  31. Saratale, R. G., Karuppusamy, I., Saratale, G. D., Pugazhendhi, A., Kumar, G., Park, Y., Ghodake, G. S., Bharagava, R. N., Banu, J. R., & Shin, H. S. (2018). A comprehensive review on green nanomaterials using biological systems: Recent perception and their future applications. Colloids and Surfaces B: Biointerfaces, 170, 20–35.

    Article  Google Scholar 

  32. Kthiri, A., Hamimed, S., Othmani, A., Landoulsi, A., O’Sullivan, S., & Sheehan, D. (2021). Novel static magnetic field effects on green chemistry biosynthesis of silver nanoparticles in Saccharomyces cerevisiae. Scientific Reports, 11(1), 1–9.

    Article  Google Scholar 

  33. Kthiri, A., Hidouri, S., Wiem, T., Jeridi, R., Sheehan, D., & Landouls, A. (2019). Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLoS ONE, 14(1), e0209843.

    Article  Google Scholar 

  34. Liu, D., Ding, L., Sun, J., Boussetta, N., & Vorobiev, E. (2016). Yeast cell disruption strategies for recovery of intracellular bio-active compounds—A review. Innovative Food Science & Emerging Technologies, 36, 181–192.

    Article  Google Scholar 

  35. Korbekandi, H., Mohseni, S., Mardani Jouneghani, R., Pourhossein, M., & Iravani, S. (2016). Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 235–239. https://doi.org/10.3109/21691401.2014.937870

    Article  Google Scholar 

  36. Apte, M., Sambre, D., Gaikawad, S., Joshi, S., Bankar, A., Kumar, A. R., & Zinjarde, S. (2013). Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express, 3(1), 32. https://doi.org/10.1186/2191-0855-3-32

    Article  Google Scholar 

  37. Sivaraj, A., Kumar, V., Sunder, R., Parthasarathy, K., & Kasivelu, G. (2020). Commercial yeast extracts mediated green synthesis of silver chloride nanoparticles and their anti-mycobacterial activity. Journal of Cluster Science, 31(1), 287–291. https://doi.org/10.1007/s10876-019-01626-4

    Article  Google Scholar 

  38. Roy, K., Sarkar, C., & Ghosh, C. (2015). Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Applied Nanoscience, 5(8), 953–959.

    Article  Google Scholar 

  39. Niknejad, F., Nabili, M., DaieGhazvini, R., & Moazeni, M. (2015). Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Current Medical Mycology, 1(3), 17–24. https://doi.org/10.18869/acadpub.cmm.1.3.17

    Article  Google Scholar 

  40. Liu, X., Chen, J.-L., Yang, W.-Y., Qian, Y.-C., Pan, J.-Y., Zhu, C.-N., Liu, L., Ou, W.-B., Zhao, H.-X., & Zhang, D.-P. (2021). Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts. Scientific Reports, 11(1), 15795. https://doi.org/10.1038/s41598-021-95262-6

    Article  Google Scholar 

  41. Plackal Adimuriyil George, B., Kumar, N., Abrahamse, H., & Ray, S. S. (2018). Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Scientific Reports, 8(1), 14368. https://doi.org/10.1038/s41598-018-32480-5

    Article  Google Scholar 

  42. Ramalingam, B., Parandhaman, T., & Das, S. K. (2016). Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces, 8(7), 4963–4976.

    Article  Google Scholar 

  43. Salem, S. S., El-Belely, E. F., Niedbała, G., Alnoman, M. M., Hassan, S. E. D., Eid, A. M., Shaheen, T. I., Elkelish, A., & Fouda, A. (2020). Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials, 10(10), 1–20. https://doi.org/10.3390/nano10102082

    Article  Google Scholar 

  44. Mohmed, A. A., Fouda, A., Elgamal, M. S., El-Din Hassan, S., Shaheen, T. I., & Salem, S. S. (2017). Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium keratoplasticum A1–3. Egyptian Journal of Chemistry, 60, 63–71. https://doi.org/10.21608/ejchem.2017.1626.1137

    Article  Google Scholar 

  45. Mourato, A., Gadanho, M., Lino, A. R., & Tenreiro, R. (2011). Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorganic Chemistry and Applications, 2011, 546074. https://doi.org/10.1155/2011/546074

    Article  Google Scholar 

  46. Alsharif, S. M., Salem, S. S., Abdel-Rahman, M. A., Fouda, A., Eid, A. M., El-Din Hassan, S., Awad, M. A., Mohamed, A. A. (2020). Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e03943

  47. Elnagar, S. E., Tayel, A. A., Elguindy, N. M., Al-saggaf, M. S., & Moussa, S. H. (2021). Innovative biosynthesis of silver nanoparticles using yeast glucan nanopolymer and their potentiality as antibacterial composite. Journal of Basic Microbiology, 61(8), 677–685. https://doi.org/10.1002/jobm.202100195

    Article  Google Scholar 

  48. Almaary, K. S., Sayed, S. R. M., Abd-Elkader, O. H., Dawoud, T. M., El Orabi, N. F., & Elgorban, A. M. (2020). Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi Journal of Biological Sciences, 27(5), 1333–1339. https://doi.org/10.1016/j.sjbs.2019.12.022

    Article  Google Scholar 

  49. Waghmare, S. R., Mulla, M. N., Marathe, S. R., & Sonawane, K. D. (2015). Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech, 5(1), 33–38. https://doi.org/10.1007/s13205-014-0196-y

    Article  Google Scholar 

  50. Eid, A. M., Fouda, A., Niedbała, G., Hassan, S. E. D., Salem, S. S., Abdo, A. M., Hetta, H. F., & Shaheen, T. I. (2020). Endophytic streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics, 9(10), 1–18. https://doi.org/10.3390/antibiotics9100641

    Article  Google Scholar 

  51. Singh, P., Pandit, S., Jers, C., Joshi, A. S., Garnæs, J., & Mijakovic, I. (2021). Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Scientific Reports, 11(1), 12619. https://doi.org/10.1038/s41598-021-92006-4

    Article  Google Scholar 

  52. Ibrahim, S., Ahmad, Z., Manzoor, M. Z., Mujahid, M., Faheem, Z., & Adnan, A. (2021). Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Scientific Reports, 11(1), 770. https://doi.org/10.1038/s41598-020-80805-0

    Article  Google Scholar 

  53. Aref, M. S., Salem, S. S. (2020). Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. Biocatalysis and Agricultural Biotechnology 27.https://doi.org/10.1016/j.bcab.2020.101689

  54. Raza, S., Ansari, A., Siddiqui, N. N., Ibrahim, F., Abro, M. I., & Aman, A. (2021). Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Scientific Reports, 11(1), 10500. https://doi.org/10.1038/s41598-021-90016-w

    Article  Google Scholar 

  55. Mallmann, E. J. J., Cunha, F. A., Castro, B. N., Maciel, A. M., Menezes, E. A., & Fechine, P. B. A. (2015). Antifungal activity of silver nanoparticles obtained by green synthesis. Revista do Instituto de Medicina Tropical de São Paulo, 57, 165–167.

    Article  Google Scholar 

  56. Is, H., Lee, J., Hwang, J. H., Kim, K. J., & Lee, D. G. (2012). Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. The FEBS journal, 279(7), 1327–1338.

    Article  Google Scholar 

  57. Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555.

    Article  Google Scholar 

  58. Singh, P., Pandit, S., Beshay, M., Mokkapati, V. R. S. S., Garnaes, J., Olsson, M. E., Sultan, A., Mackevica, A., Mateiu, R. V., Lütken, H., Daugaard, A. E., Baun, A., & Mijakovic, I. (2018). Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S886–S899. https://doi.org/10.1080/21691401.2018.1518909

    Article  Google Scholar 

  59. Tang, S., & Zheng, J. (2018). Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials, 7(13), 1701503. https://doi.org/10.1002/adhm.201701503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem S. Salem.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, S.S. Baker’s Yeast-Mediated Silver Nanoparticles: Characterisation and Antimicrobial Biogenic Tool for Suppressing Pathogenic Microbes. BioNanoSci. 12, 1220–1229 (2022). https://doi.org/10.1007/s12668-022-01026-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-01026-5

Keywords

Navigation