Skip to main content

Advertisement

Log in

Cytoprotective Effect of Biogenic Magnesium Hydroxide Nanoparticles Using Monodora myristica Aqueous Extract Against Oxidative Damage in Streptozotocin-Induced Diabetic Rats

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

In contemporary reports, biosynthesis of plant-mediated nanomaterials using different metals with enormous therapeutic evidences has been well documented in the management of human ailments with little or no records of the involvements of magnesium (Mg). This study therefore aimed at exploring the protective effects of phytomediated magnesium-based nanoparticles using Monodora myristica (M. myristica) seed (Mg(OH)NP-Mm) against oxidative damage in tissues of streptozotocin (STZ)-induced diabetic Wistar rats. Mg(OH)NP-Mm was biosynthesized and characterized. Forty-eight adult male Wistar rats weighing 150–200 g were indiscriminately grouped into 8 groups of 6 rats each. Diabetes was induced with a low dose of STZ (55 mg/kg body weight; bw) and diabetic animals administered 50, 100, 150, and 200 mg/kg bw Mg(OH)NP-Mm for 21 days, while control groups received glibenclamide (5 mg/kg bw) and Mg(OH)2-STD (150 mg/kg bw), respectively. However, treatment with Mg(OH)NP-Mm caused a significant (p < 0.05) improvement in fasting blood sugar (FBG), especially in the group administered the highest dose of Mg(OH)2NP-Mm compared to diabetic (i.e., 297.50 ± 18.63 to 133.50 ± 20.50 mg/ml), serum hepatic biomarkers (ALP, 276.55 ± 11.49 to 151.66 ± 4.00 U/l; AST, 63.13 ± 3.05 to 55.25 ± 12.25; and ALT, 38.75 ± 1.31 to 23.30 ± 7.50 U/l, respectively), renal clearance markers (creatinine and urea), total protein (TP), and bilirubin. Enzymatic and non-enzymatic antioxidants, as well as histomorphological examinations indicated a significant (p < 0.05) restoration of the hepatic, renal, and brain tissue architectures. Overall, cytoprotective effects revealed by Mg(OH)NP-Mm via its ability to mitigate redox imbalance in the tissues examined could probably be responsible for the reversal of FBG in the STZ-induced diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou, Z., Sun, B., Huang, S., Jia, W., & Yu, D. (2019). The tRNA-associated dysregulation in diabetes mellitus. Metabolism, 94, 9–17.

    Article  Google Scholar 

  2. Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88.

    Article  Google Scholar 

  3. Balakumar, P., Maung-U, K., & Jagadeesh, G. (2016). Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacological Research, 113, 600–609.

    Article  Google Scholar 

  4. Seghrouchni, I., Drai, J., Bannier, E., Rivière, J., Calmard, P., Garcia, I., Orgiazzi, J., & Revol, A. (2002). Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clinica Chimica Acta, 321(1–2), 89–96.

    Article  Google Scholar 

  5. Kumar, H. P., Gowdappa, H. B., Hosmani, T., & Urs, T. (2018). Exocrine dysfunction correlates with endocrinal impairment of pancreas in type 2 diabetes mellitus. Indian Journal of Endocrinology and Metabolism, 22(1), 121.

    Article  Google Scholar 

  6. ERF Collaboration (E. R. F. C.). (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet, 375(9733), 2215–2222.

    Article  Google Scholar 

  7. Rodriguez, B. L., Abbott, R. D., Fujimoto, W., Waitzfelder, B., Chen, R., Masaki, K., Schatz, I., Petrovitch, H., Ross, W., Yano, K., & Blanchette, P. L. (2002). The American Diabetes Association and World Health Organization classifications for diabetes: Their impact on diabetes prevalence and total and cardiovascular disease mortality in elderly Japanese-American men. Diabetes Care, 25(6), 951–955.

    Article  Google Scholar 

  8. Goodarzi, N., Zangeneh, M. M., & Zangeneh, A. (2020). The effect of ethanolic extract of Allium saralicum RM Fritsch on diabetic hepatopathy in male mice. Daneshvar Medicine: Basic and Clinical Research Journal, 25(5), 21–30.

    Google Scholar 

  9. Pacher, P., Obrosova, I. G., Mabley, J. G., & Szabó, C. (2005). Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Current Medicinal Chemistry, 12(3), 267–275.

    Article  Google Scholar 

  10. Cooper, M. E., Bonnet, F., Oldfield, M., & Jandeleit-Dahm, K. (2001). Mechanisms of diabetic vasculopathy: An overview. American Journal of Hypertension, 14(5), 475–486.

    Article  Google Scholar 

  11. Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovascular Diabetology, 4(1), 1–11.

    Article  Google Scholar 

  12. Ceriello, P. A. (2006). Oxidative stress and diabetes-associated complications. Endocrine Practice, 12(S1), 60–62.

    Article  Google Scholar 

  13. Soriano, F. G., Virag, L., Jagtap, P., Szabo, E., Mabley, J. G., Liaudet, L., Marton, A., Hoyt, D. G., Murthy, K. G., Salzman, A. L., & Southan, G. J. (2001). Diabetic endothelial dysfunction: The role of poly (ADP-ribose) polymerase activation. Nature Medicine, 7(1), 108–113.

    Article  Google Scholar 

  14. Afolabi, O. B., Oloyede, O. I., & Agunbiade, S. O. (2018). Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress- In vitro. Journal of Integrative Medicine, 16, 192–198.

    Article  Google Scholar 

  15. Haskins, K., Bradley, B., & Powers, K. (2003). Oxidative stress in type 1 diabetes. Annals of the New York Academy of Sciences, 1005, 43–54.

    Article  Google Scholar 

  16. Piconi, L., Quagliaro, L., & Ceriello, A. (2003). Oxidative stress in diabetes. Clinical Chemistry and Laboratory Medicine, 41, 1144–1149.

    Article  Google Scholar 

  17. Yamagishi, S. I., & Matsui, T. (2018). Therapeutic potential of DNA-aptamers raised against AGE-RAGE axis in diabetes-related complications. Current Pharmaceutical Design, 24(24), 2802–2809.

    Article  Google Scholar 

  18. Desai, N., Koppisetti, H., Pande, S., Shukla, H., Sirsat, B., Ditani, A. S., Mallick, P. P., Kathar, U., Kalia, K., & Tekade, R. K. (2021). Nanomedicine in the treatment of diabetic nephropathy. Future Medicinal Chemistry, 13(07), 663–686.

    Article  Google Scholar 

  19. Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F. H., & Qoronfleh, M. W. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research, 23(1), 1–29.

    Article  Google Scholar 

  20. Gera, M., Sharma, N., Ghosh, M., Huynh, D. L., Lee, S. J., Min, T., Kwon, T., & Jeong, D. K. (2017). Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 8(39), 66680.

    Article  Google Scholar 

  21. Nasrollahzadeh, M., Mahmoudi-GomYek, S., Motahharifar, N., & GhaforiGorab, M. (2019). Recent developments in the plant-mediated green synthesis of Ag-based nanoparticles for environmental and catalytic applications. Chemical Record, 19, 2436–2479.

    Article  Google Scholar 

  22. Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31, 346–356.

    Article  Google Scholar 

  23. Afolabi, O. B., Oloyede, O. I., Aluko, B. T., & Johnson, J. A. (2021). Biosynthesis of magnesium hydroxide nanomaterials using Monodora myristica, antioxidative activities and effect on disrupted glucose metabolism in streptozotocin-induced diabetic rat. Food Bioscience, 41, 101023.

    Article  Google Scholar 

  24. Gilbert, F., Michel, L., & André, C. (2011). Annonaceae essential oils: A review. Journal of Essential Oil Research, 11, 131–142.

    Google Scholar 

  25. Lin, M. C., Huang, Y. L., Liu, H. W., Yang, D. Y., Lee, C. P., Yang, L. L., & Cheng, F. C. (2004). On-line microdialysis-graphite furnace atomic absorption spectrometry in the determination of brain magnesium levels in gerbils subjected to cerebral ischemia/reperfusion. Journal of the American College of Nutrition, 23, 561–565.

    Article  Google Scholar 

  26. Makhluf, S., Dror, R., Nitzan, Y., Abramovich, Y., Jelinek, R., & Gedanken, A. (2005). Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Advanced Functional Materials, 15, 1708–1715.

    Article  Google Scholar 

  27. Taglieri, G., Felice, B., Daniele, V., & Ferrante, F. (2015). Mg(OH)2 nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route. Journal of Nanoparticle Research, 17, 411.

    Article  Google Scholar 

  28. Awwad, A. M., & Ahmad, L. A. (2004). Biosynthesis, characterization, and optical properties of magnesium hydroxide and oxide nano-flakes using citrus lemon leaf extract. Arab Journal of Physical Chemistry, 1, 65–70.

    Google Scholar 

  29. Olajire, A. A., Abidemi, J. J., Lateef, A., & Benson, N. U. (2016). Adsorptive desulphurization of model oil by Ag nanoparticles-modified activated carbon prepared from brewer’s spent grains. Journal of Environmental Chemical Engineering, 5, 147–159.

    Article  Google Scholar 

  30. Ulas, M., Orhan, C., Tuzcu, M., Ozercan, I. H., Sahin, N., Gencoglu, H., Komorowski, J. R., & Sahin, K. (2015). Anti-diabetic potential of chromium histidinate in diabetic retinopathy rats. BMC Complementary and Alternative Medicine, 15, 16.

    Article  Google Scholar 

  31. Jenkins, R. D., & Bakhat, A. (1993). Self-monitoring of blood glucose. The British Medical Journal, 306(6873), 332.

    Article  Google Scholar 

  32. Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56–63.

    Article  Google Scholar 

  33. Goa, J. (1953). A micro biuret method for protein determination of total protein in cerebrospinal fluid. Scandinavian Journal of Clinical and Laboratory Investigation, 5(3), 218–222.

    Article  Google Scholar 

  34. Spierto, F. W., Macneil, M. L., & Burtis, C. A. (1979). The effect of temperature and wavelength on the measurement of creatinine with the Jaffe procedure. Clinical Biochemistry, 12(1), 18–21.

    Article  Google Scholar 

  35. Fawcett, J., & Scott, J. (1960). A rapid and precise method for the determination of urea. Journal of Clinical Pathology, 13(2), 156–159.

    Article  Google Scholar 

  36. Amadi, B. A., Agomuo, E. N., & Duru, M. K. C. (2013). Toxicological studies of Asmina triloba leaves on haematology, liver, kidney using rat model. International Journal of Science and Research, 4(2), 11–17.

    Google Scholar 

  37. Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10), 3170–3175.

    Article  Google Scholar 

  38. Sinha, A. K. (1972). Colorimetric assay of catalase. Anal of Biochemistry, 47(2), 389–394.

    Article  Google Scholar 

  39. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.

    Article  Google Scholar 

  40. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal of Biochemistry, 95(2), 351–358.

    Article  Google Scholar 

  41. Andjelkovic, M., Buha Djordjevic, A., Antonijevic, E., Antonijevic, B., Stanic, M., Kotur-Stevuljevic, J., Spasojevic-Kalimanovska, V., Jovanovic, M., Boricic, N., Wallace, D., & Bulat, Z. (2019). Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. International Journal of Environmental Research and Public Health, 16(2), 274.

    Article  Google Scholar 

  42. Chu, Y., Sun, J., Wu, X., & LiuH, R. (2002). Antioxidant and antiproliferative activity of common vegetables. Journal of Agricultural and Food Chemistry, 50, 6910–6916.

    Article  Google Scholar 

  43. Sbrana, C., Avio, L., & Giovannetti, M. (2014). Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis, 35(11), 1535–1546.

    Article  Google Scholar 

  44. Omojate, G. C., Enwa, F. O., Jewo, A. O., & Eze, C. O. (2014). Mechanisms of antimicrobial actions of phytochemicals against enteric pathogens–A review. Journal of Pharmaceutical, Chemical and Biological Sciences, 2(2), 77–85.

    Google Scholar 

  45. Tu, Z., Wang, W., Cui, J., Zhang, X., Lu, X., Xu, J., & Parsons, S. M. (2012). Synthesis and evaluation of in vitro bioactivity for vesicular acetylcholine transporter inhibitors containing two carbonyl groups. Bioorganic and Medicinal Chemistry, 20(14), 4422–4429.

    Article  Google Scholar 

  46. Oehlke, K., Adamiuk, M., Behsnilian, D., Gräf, V., Mayer-Miebach, E., Walz, E., & Greiner, R. (2014). Potential bioavailability enhancement of bioactive compounds using food-grade engineered nanomaterials: A review of the existing evidence. Food and Function, 5(7), 1341–1359.

    Article  Google Scholar 

  47. Masiello, P. (2006). Animal models of type 2 diabetes with reduced pancreatic β-cell mass. International Journal of Biochemistry and Cell Biology, 38(5–6), 873–893.

    Article  Google Scholar 

  48. Punithavathi, V. R., Anuthama, R., & Prince, P. S. (2008). Combined treatment with naringin and vitamin C ameliorates streptozotocin-induced diabetes in male Wistar rats. Journal of Applied Toxicology, 28(6), 806–813.

    Article  Google Scholar 

  49. Zafar, M., & Naqvi, S. N. (2010). Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats A comparative study. International Journal of Morphology, 28, 1.

    Article  Google Scholar 

  50. Piyachaturawat, P., Poprasit, J., & Glinsukon, T. (1991). Gastric mucosal secretions and lesions by different doses of Streptozotocin in rats. Toxicolology Letter, 55, 21–29.

    Article  Google Scholar 

  51. Kalwat, M. A., & Cobb, M. H. (2017). Mechanisms of the amplifying pathway of insulin secretion in the β cell. Pharmacology and Therapeutics, 179, 17–30.

    Article  Google Scholar 

  52. Gopalsamy, R. G., Savarimuthu, I., & Michael, G. P. (2011). Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food and Chemical Toxicology, 49, 2725–2733.

    Article  Google Scholar 

  53. El-Demerdash, F. M., Yousef, M. I., & Abou El-Naga, N. I. (2005). Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food and Chemical Toxicology, 43(1), 57–63.

    Article  Google Scholar 

  54. Mukinda, J. T., & Eagles, P. F. (2010). Acute and sub-chronic oral toxicity profiles of the aqueous extract of Polygala fruticosa in female mice and rats. Journal of Ethnopharmacology, 128(1), 236–240.

    Article  Google Scholar 

  55. Nathwani, R. A., Pais, S., Reynolds, T. B., & Kaplowitz, N. (2005). Serum alanine aminotransferase in skeletal muscle diseases. Hepatology, 41(2), 380–382.

    Article  Google Scholar 

  56. Witthawaskul, P., Panthong, A., Kanjanapothi, D., Taesothikul, T., & Lertprasertsuke, N. (2003). Acute and subacute toxicities of the saponin mixture isolated from Schefflera leucantha Viguier. Journal of Ethnopharmacology, 89(1), 115–121.

    Article  Google Scholar 

  57. Nkosi, C. Z., Opoku, A. R., & Terblanche, S. E. (2005). Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in CCl4-induced liver injury in low-protein fed rats. Phytotherapy Research, 19(4), 341–345.

    Article  Google Scholar 

  58. Gowda, S., Desai, P. B., Kulkarni, S. S., Hull, V. V., Math, A. A., & Vernekar, S. N. (2010). Markers of renal function tests. North American Journal of Medical Sciences, 2(4), 170.

    Google Scholar 

  59. Klonoff, D. C., Buse, J. B., Nielsen, L. L., Guan, X., Bowlus, C. L., Holcombe, J. H., Wintle, M. E., & Maggs, D. G. (2008). Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Current Medical Research and Opinion, 24(1), 275–286.

    Article  Google Scholar 

  60. Madkour, N. K. (2012). Protective effect of curcumin on oxidative stress and DNA fragmentation against lambda cyhalothrin-induced liver damage in rats. Journal of Applied Pharmaceutical Science, 2(12), 76.

    Google Scholar 

  61. Vítek, L. (2012). The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Frontiers in Pharmacology, 3, 55.

    Article  Google Scholar 

  62. Puppalwar, P. V., Goswami, K., & Dhok, A. (2012). Review on “evolution of methods of bilirubin estimation.” IOSR Journal of Dental and Medical Sciences, 1(3), 17–28.

    Article  Google Scholar 

  63. Horsfall, L. J., Nazareth, I., & Petersen, I. (2012). Cardiovascular events as a function of serum bilirubin levels in a large, statin-treated cohort. Circulation, 126(22), 2556–2564.

    Article  Google Scholar 

  64. Igbakin, A. P., & Oloyede, O. B. (2009). Comparative studies on the hypoglycaemic, hypoproteinaemic, hypocholesterolaemic and hypolipidaemic properties of ethanolic and normal saline extracts of the root of Vernonia amygdalina in diabetic rats. Advances in Environmental Biology, 3(1), 33–38.

    Google Scholar 

  65. Gaskill, C. L., Miller, L. M., Mattoon, J. S., Hoffmann, W. E., Burton, S. A., Gelens, H. C., Ihle, S. L., Miller, J. B., Shaw, D. H., & Cribb, A. E. (2005). Liver histopathology and liver and serum alanine aminotransferase and alkaline phosphatase activities in epileptic dogs receiving phenobarbital. Veterinary Pathology, 42(2), 147–160.

    Article  Google Scholar 

  66. Sheela, N., Jose, M. A., Sathyamurthy, D., & Kumar, B. N. (2013). Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats. Iranian Journal of Kidney Diseases, 7, 2.

    Google Scholar 

  67. Abou-Seif, M. A., & Youssef, A. A. (2004). Evaluation of some biochemical changes in diabetic patients. Clinica Chimica Acta, 346(2), 161–170.

    Article  Google Scholar 

  68. Skov, A. R., Toubro, S., & Rønn, B. (1999). Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. International Journal of Obesity, 23(5), 528.

    Article  Google Scholar 

  69. Wolff, S. P., Jiang, Z. Y., & Hunt, J. V. (1991). Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radical Biology and Medicine, 10(5), 339–352.

    Article  Google Scholar 

  70. Luan, F., Peng, L., Lei, Z, Jia, X., Zou, J., Yang, Y., He, X., & Zeng, N. (2021). Traditional uses, phytochemical constituents and pharmacological properties of Averrhoa carambola L.: A review. Frontiers in Pharmacology, 1814.

  71. Ghanbari, E., Nejati, V., & Khazaei, M. (2016). Improvement in serum biochemical alterations and oxidative stress of liver and pancreas following use of royal jelly in streptozotocin-induced diabetic rats. Cell Journal, 18(3), 362.

    Google Scholar 

  72. Huang, C. T., Chen, M. L., Huang, L. L., & Mao, I. F. (2002). Uric acid and urea in human sweat. Chinese Journal Physiology, 45(3), 109–116.

    Google Scholar 

  73. Knepper, M. A., & Roch-Ramel, F. (1987). Pathways of urea transport in the mammalian kidney. Kidney International, 31(2), 629–633.

    Article  Google Scholar 

  74. Levey, A. S., Bosch, J. P., Lewis, J. B., Greene, T., Rogers, N., & Roth, D. (1999). A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Annals of Internal Medicine, 130(6), 461–470.

    Article  Google Scholar 

  75. Sabir, S., Akash, M. S., Fiayyaz, F., Saleem, U., Mehmood, M. H., & Rehman, K. (2019). Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives. Biomedicine and Pharmacotherapy, 114, 108802.

    Article  Google Scholar 

  76. Dominik, A., & Stange, J. (2021). Similarities, differences, and potential synergies in the mechanism of action of albumin dialysis using the MARS albumin dialysis device and the CytoSorb hemoperfusion device in the treatment of liver failure. Blood Purification, 50(1), 119–128.

    Article  Google Scholar 

  77. Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic kidney disease. Lancet, 389(10075), 1238–1252.

    Article  Google Scholar 

  78. Westerberg, D. P. (2013). Diabetic ketoacidosis: Evaluation and treatment. American Family Physician, 87(5), 337–346.

    Google Scholar 

  79. Qiu, H., Novikov, A., & Vallon, V. (2017). Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes-Metabolism Research and Reviews, 33(5), e2886.

    Article  Google Scholar 

  80. Yu, M., Zhou, J., Du, B., Ning, X., Authement, C., Gandee, L., Kapur, P., Hsieh, J. T., & Zheng, J. (2016). Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angewandte Chemie, 128(8), 2837–2841.

    Article  Google Scholar 

  81. Amartey, N. A., Nsiah, K., & Mensah, F. O. (2015). Plasma levels of uric acid, urea and creatinine in diabetics who visit the clinical analysis laboratory (CAn-Lab) at Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Journal of Clinical and Diagnostic Research, 9(2), BC05.

    Google Scholar 

  82. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757.

    Article  Google Scholar 

  83. Adwas, A. A., Elsayed, A., Azab, A. E., & Quwaydir, F. A. (2019). Oxidative stress and antioxidant mechanisms in human body. Journal of Applied Biotechnology and Bioengineering, 6(1), 43–47.

    Article  Google Scholar 

  84. Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293.

    Article  Google Scholar 

  85. Dawson, N. J., & Storey, K. B. (2017). Passive regeneration of glutathione: Glutathione reductase regulation in the freeze-tolerant North American wood frog, Rana sylvatica. Journal of Experimental Biology, 220(17), 3162–3171.

    Google Scholar 

  86. Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Predoi, G., & Serban, A. I. (2021). Oxidative stress mitigation by antioxidants-an overview on their chemistry and influences on health status. European Journal of Medicinal Chemistry, 209, 112891.

    Article  Google Scholar 

  87. Baltacıoğlu, E., Yuva, P., Aydın, G., Alver, A., Kahraman, C., Karabulut, E., & Akalın, F. A. (2014). Lipid peroxidation levels and total oxidant/antioxidant status in serum and saliva from patients with chronic and aggressive periodontitis. Oxidative stress index: A new biomarker for periodontal disease? Journal of Periodontology, 85(10), 1432–1441.

    Article  Google Scholar 

  88. Ishaq, M., Evans, M. D., & Ostrikov, K. K. (2014). Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2–ASK1 apoptosis pathways and oxidative stress is mitigated by Srx–Nrf2 anti-oxidant system. Biochimica et Biophysica Acta, 1843(12), 2827–2837.

    Article  Google Scholar 

  89. Shairibha, S. R., & Rajadurai, M. (2014). Anti-diabetic effect of p-coumaric acid on lipid peroxidation, antioxidant status and histopathological examinations in streptozotocin-induced diabetic rats. International Journal of Integrative Sciences, Innovation and Technology, 3(5), 1–11.

    Google Scholar 

  90. Henderson, L. M. (1998). Role of histidines identified by mutagenesis in the NADPH oxidase-associated H+ channel. Journal of Biological Chemistry, 273(50), 33216–33223.

    Article  Google Scholar 

  91. Ithayaraja, C. M. (2011). Mini-review: Metabolic functions and molecular structure of glutathione reductase. International Journal of Pharmaceutical Sciences and Research, 9, 104–115.

    Google Scholar 

  92. Bardaweel, S. K., Gul, M., Alzweiri, M., Ishaqat, A., & ALSalamatBashatwah, H. A. R. M. (2018). Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. The Eurasian Journal of Medicine, 50(3), 193.

    Article  Google Scholar 

  93. Turkmen, R., Birdane, Y. O., Demirel, H. H., Yavuz, H., Kabu, M., & Ince, S. (2019). Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environmental Science and Pollution Research, 26(11), 11427–11437.

    Article  Google Scholar 

  94. Ahmed, F., Husain, Q., Ansari, M. O., & Shadab, G. G. H. A. (2020). Antidiabetic and oxidative stress assessment of bio-enzymatically synthesized zinc oxide nanoformulation on streptozotocin-induced hyperglycemic mice. Applied Nanoscience, 10(3), 879–893.

    Article  Google Scholar 

  95. Barakat, A. Z., Bassuiny, R. I., Abdel-Aty, A. M., & Mohamed, S. A. (2020). Diabetic complications and oxidative stress: The role of phenolic-rich extracts of saw palmetto and date palm seeds. Journal of Food Biochemistry, 44(11), e13416.

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this work hereby appreciate the management of the Afe Babalola University in creating a research-friendly environment for the success of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olakunle Bamikole Afolabi.

Ethics declarations

Ethical Approval

The use of experimental rats involved in this study was carried out with a strict compliance to the ethical guidelines for the best practice issued by the Ethical Clearance Committee (ECC) of the Afe Babalola University.

Conflict of Interest

The authors declare no competing interests.

Animal Research Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afolabi, O.B., Oloyede, O.I., Aluko, B.T. et al. Cytoprotective Effect of Biogenic Magnesium Hydroxide Nanoparticles Using Monodora myristica Aqueous Extract Against Oxidative Damage in Streptozotocin-Induced Diabetic Rats. BioNanoSci. 12, 1197–1210 (2022). https://doi.org/10.1007/s12668-022-01025-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-01025-6

Keywords

Navigation