Skip to main content

Advertisement

Log in

Microwave-Assisted Fabrication of Silver Nanoparticles Utilizing Seed Extract of Areca catechu with Antioxidant Potency and Evaluation of Antibacterial Efficacy Against Multidrug Resistant Pathogenic Bacterial Strains

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Areca catechu seed, often known as areca nut, is a source of numerous phytochemicals and is one of the main ingredients in the preparation of betel. In this study, silver nanoparticles (AgNPs) have been fabricated by a microwave irradiation system using A. catechu seed extract as an effective bioreductant. The antioxidant efficacy of A. catechu seed extract was demonstrated using DPPH radical scavenging, ferric ion, hydrogen peroxide radical, and nitric oxide radical scavenging assay. The AgNPs were found to be spherical in shape, with an average particle size of 17.5 ± 0.5 nm, as evident by HRTEM analysis. AgNPs were tested for antibacterial effectiveness against multidrug-resistant Escherichia coli (MLD 2), Klebsiella oxytoca (MLD 41), and Staphylococcus aureus (MLD 4) bacterial strains using standard antimicrobial assays including MIC, MBC, agar diffusion, and biofilm reduction assay. It was observed that MLD 41 (MIC value 12.5 μg/ml) appeared as the most sensitive against AgNPs, followed by MLD 2 (MIC value 50 μg/ml) and MLD 4 (MIC value 50 μg/ml). AgNPs were also found to be biocompatible (up to 50 μg/ml of AgNPs), as evident by the hemolysis assay. This study shows a simple, eco-friendly technique for fabricating AgNPs from A. catechu seed extract, as well as its antibacterial capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

XRD:

X-ray powder diffraction

UV–vis:

Ultraviolet–visible spectroscopy

SAED:

Selected area (electron) diffraction

PBS:

Phosphate buffer saline

NB:

Nutrient broth

NA:

Nutrient agar

MLD 41:

Klebsiella oxytoca

MLD 4:

Staphylococcus aureus

MLD 2:

Escherichia coli

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

HRTEM:

High-resolution transmission electron microscopy

H2O2 :

Hydrogen peroxide

FTIR:

Fourier-transform infrared spectroscopy

EDX:

Energy-dispersive X-ray analysis

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

DAD:

Disc agar diffusion

AR:

Analytical reagent

AgNPs:

Silver nanoparticles

AgNO3 :

Silver nitrate

References

  1. C Wang X Gao Z Chen Y Chen H Chen 2017 Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review Polymers 9 689

    Google Scholar 

  2. S Fazal A Jayasree S Sasidharan M Koyakutty SV Nair D Menon 2014 Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer ACS Applied Materials & Interfaces 6 11 8080 8089

    Google Scholar 

  3. A Genevieve M Kahrilas Laura SJ Wally H Fredrick Michael L Amy JE Prieto Owens. 2014 Microwave-assisted green synthesis of silver nanoparticles using orange peel extract ACS Sustainable Chemistry & Engineering 2 3 367 376

    Google Scholar 

  4. ST Fardood A Ramazani 2016 Green synthesis and characterization of copper oxide nanoparticles using coffee powder extract Journal Nanostructures 6 2 167 171

    Google Scholar 

  5. CH Ramamurthy KS Sampath P Arunkumar Suresh kumar, M., Sujatha, V., Premkumar, K., & Thirunavukkarasu, C. 2013 Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells Bioprocess and Biosystems Engineering 36 8 1131 1139

    Google Scholar 

  6. D Suresh PC Nethravathi H Udayabhanu H Rajanaika H Nagabhushana SC Sharma 2015 Green synthesis of multifunctional zinc oxide nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities Materials Science in Semiconductor Processing 31 446 454

    Google Scholar 

  7. H Sugimoto M Fujii K Imakita 2016 Silicon nanocrystal-noble metal hybrid nanoparticles Nanoscale 8 10956 10962

    Google Scholar 

  8. SK Kulkarni 2007 Nanotechnology: Principles and practices Capital Publishing Company

    Google Scholar 

  9. L Rodrı L Rodríguez-Sánchez MC Blanco LC Ferracin 2000 Electrochemical synthesis of silver nanoparticles The Journal of Physical Chemistry B 104 9683 9688

    Google Scholar 

  10. R Arif R Uddin 2021 A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications Med Devices Sens. 4 e10158

    Google Scholar 

  11. S Ghotekar H Dabhane S Pansambal R Oza P Tambade V Medhane 2020 A review on biomimetic synthesis of Ag2O nanoparticles using plant extract, characterization and its recent applications Advanced Journal of Chemistry-Section B. 2 3 102 111

    Google Scholar 

  12. J Davies D Davies 2010 Origins and evolution of antibiotic resistance Microbiology and molecular biology reviews 74 3 417 433

    Google Scholar 

  13. Yousefi, M., Dadashpour, M., Hejazi, M., Hasanzadeh, M., Behnam, B., de la Guardia, M., ... & Mokhtarzadeh, A. (2017). Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Materials Science and Engineering: C, 74, 568-581.

  14. B Ramalingam T Parandhaman SK Das 2016 Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa ACS applied materials & interfaces 8 7 4963 4976

    Google Scholar 

  15. P Thuesombat S Hannongbua S Akasit S Chadchawan 2014 Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth Ecotoxicology and environmental safety 104 302 309

    Google Scholar 

  16. S Bangale S Ghotekar 2019 Bio-fabrication of Silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities International Journal of Nano Dimension. 10 2 217 24

    Google Scholar 

  17. S Ghotekar A Savale 2018 Pansambal S. Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities Journal of Water and Environmental Nanotechnology 3 2 95 105

    Google Scholar 

  18. S Ghotekar S Pansambal SP Pawar T Pagar R Oza S Bangale 2019 Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract SN Applied Sciences 1 11 1 2

    Google Scholar 

  19. Ghotekar, S., Pagar, K., Pansambal, S., Murthy, H. A., Oza, R. (2021) Biosynthesis of silver sulfide nanoparticle and its applications. In Handbook of greener synthesis of nanomaterials and compounds. 191–200).

  20. Das, B., Dash, S. K., Mandal, D., Ghosh, T., Chattopadhyay, S., Tripathy, S., ... & Roy, S. (2017). Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry, 10(6), 862-876.

  21. S Agnihotri S Mukherji S Mukherji 2014 Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy Rsc Advances 4 8 3974 3983

    Google Scholar 

  22. AA Baby K Regi Raphael 2014 Potential antimicrobial, anthelmintic and antioxidant properties of Areca nut L. root Int. J. Pharm. Pharmaceut. Sci. 6 6 486 489

    Google Scholar 

  23. Samanta S, Banerjee J, Ali KM, Giri B, Dash SK. (2020). Biochemical characterization and antibiotic sensitivity profiling of uropathogenic bacterial strains isolated from urine sample of UTI patients. Journal of Advance Scientific Research.; 11 (1) suppl 1: 280–295.

  24. RP Matamane MK Pillai S Magama 2019 DPPH radical scavenging activity of extracts from Buddleja salviifolia Pharmacology OnLine 2 233 240

    Google Scholar 

  25. N Loganayaki P Siddhuraju S Manian 2013 Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L Journal of food science and technology 50 4 687 695

    Google Scholar 

  26. Dash, S. S., Samanta, S., Dey, S., Giri, B., & Dash, S. K. (2020). Rapid green synthesis of biogenic silver nanoparticles using Cinnamomum tamala leaf extract and its potential antimicrobial application against clinically isolated multidrug-resistant bacterial strains. Biological trace element research, 198(2).

  27. K Pavithra S Vadivukkarasi 2015 Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn Food Science and Human Wellness 4 1 42 46

    Google Scholar 

  28. CLSI (2019) In: Performance standards for antimicrobial susceptibility testing. 29th ed. Wayne, PA: Clinical and Laboratory Standards Institute; CLSI supplement M100.

  29. Das, B., Mandal, D., Dash, S. K., Chattopadhyay, S., Tripathy, S., Dolai, D. P., ... & Roy, S. (2016). Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infectious Diseases: Research and Treatment, 9, IDRT-S31741.

  30. D Mandal SK Dash B Das S Chattopadhyay T Ghosh D Das S Roy 2016 Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge Biomedicine & Pharmacotherapy 83 548 558

    Google Scholar 

  31. FA Qais I Ahmad M Altaf SH Alotaibi 2021 Biofabrication of gold nanoparticles using Capsicum annuum extract and its antiquorum sensing and antibiofilm activity against bacterial pathogens ACS Omega 6 16670 16682

    Google Scholar 

  32. Dash, S. K., Dash, S. S., Chattopadhyay, S., Ghosh, T., Tripathy, S., Mahapatra, S. K., ... & Roy, S. (2015). Folate decorated delivery of self assembled betulinic acid nano fibers: a biocompatible anti-leukemic therapy. RSC Advances, 5(31), 24144-24157.

  33. MS Blois 1958 Antioxidant determinations by the use of a stable free radical Nature 181 4617 1199 1200

    Google Scholar 

  34. AA Dehpour MA Ebrahimzadeh NS Fazel NS Mohammad 2009 Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition Grasasy aceites 60 4 405 412

    Google Scholar 

  35. LM Sari GP Subita EI Auerkari 2017 Potential antioxidant and cytotoxic activities of areca nut (Areca catechu Linn.) extract in human oral squamous cell carcinoma and keratinocyte cells Asian J Pharm Clin Res 10 10 286 291

    Google Scholar 

  36. S Meir J Kanner B Akiri S Philosoph-Hadas 1995 Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves Journal of agricultural and food chemistry 43 7 1813 1819

    Google Scholar 

  37. SM Nabavi MA Ebrahimzadeh SF Nabavi M Fazelian B Eslami 2009 In vitro antioxidant and free radical scavenging activity of Diospyros lotus and Pyrus boissieriana growing in Iran Pharmacognosy magazine 5 18 122

    Google Scholar 

  38. S Kumar A Yadav M Yadav JP Yadav 2017 Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm. f BMC research notes 10 1 1 12

    Google Scholar 

  39. A Benslama A Harrar 2016 Free radicals scavenging activity and reducing power of two Algerian Sahara medicinal plants extracts International Journal of Herbal Medicine 4 6 158 161

    Google Scholar 

  40. Parejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Saavedra, G., Murcia, M. A., ... & Codina, C. (2003). Investigation of Bolivian plant extracts for their radical scavenging activity and antioxidant activity. Life Sciences, 73(13), 1667-1681.

  41. MA Ebrahimzadeh SF Nabavi SM Nabavi 2009 Antioxidant activities of methanol extract of Sambucus ebulus L. flower Pakistan journal of biological sciences: PJBS 12 5 447 450

    Google Scholar 

  42. K AsokKumar M UmaMaheswari AT Sivashanmugam V SubhadraDevi N Subhashini TK Ravi 2009 Free radical scavenging and antioxidant activities of Glinus oppositifolius (carpet weed) using different in vitro assay systems Pharmaceutical Biology 47 6 474 482

    Google Scholar 

  43. F Parrino S Livraghi E Giamello R Ceccato L Palmisano 2020 Role of hydroxyl, superoxide, and nitrate radicals on the fate of bromide ions in photocatalytic TiO2 suspensions ACS Catalysis 10 14 7922 7931

    Google Scholar 

  44. Boora, F., Chirisa, E., & Mukanganyama, S. (2014). Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. Journal of Food Processing2014.

  45. JB Habu BO Ibeh 2015 In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract Biological Research 48 1 1 10

    Google Scholar 

  46. SA Adebayo M Ondua LJ Shai SL Lebelo 2019 Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants Journal of inflammation research 12 195

    Google Scholar 

  47. M Bhagat R Anand R Datt V Gupta S Arya 2019 Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations Journal of Inorganic and Organometallic Polymers and Materials 29 3 1039 1047

    Google Scholar 

  48. A Rangayasami K Kannan S Joshi M Subban 2020 Bioengineered silver nanoparticles using Elytraria acaulis (L.f.) Lindau leaf extract and its biological applications Biocatalysis and agricultural biotechnology 27 101690 https://doi.org/10.1016/j.bcab.2020.101690

    Article  Google Scholar 

  49. Palani, G., Kannan, K., Radhika, D., Vijayakumar, P., & Pakiyaraj, K. (2020). Bioengineered metal and metal oxide nanoparticles for photocatalytic and biological applications: a review. Physics and Chemistry of Solid State, 21(4), 571-583. https://doi.org/10.15330/pcss.21.4.571-583.

  50. P Bindu S Thomas 2014 Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis J Theor Appl Phys 8 123 134

    Google Scholar 

  51. RR Vanimakhal BS Ezhilarasi 2016 Phytochemical qualitative analysis and total tannin content in the aqueous extract of Areca catechu nut Asian J Biomed Pharmaceutic Sci 6 54 7 9

    Google Scholar 

  52. Yun’an Qing, L. C., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., … & Qin, Y. 2018 Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies International journal of nanomedicine 13 3311

    Google Scholar 

  53. YY Loo Y Rukayadi MAR Nor-Khaizura CH Kuan BW Chieng M Nishibuchi S Radu 2018 In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens Frontiers in microbiology 9 1555

    Google Scholar 

  54. A Murei K Pillay P Govender N Thovhogi WM Gitari A Samie 2021 Synthesis, characterization and in vitro antibacterial evaluation of Pyrenacantha grandiflora conjugated silver nanoparticles Nanomaterials 11 6 1568

    Google Scholar 

  55. A Sharma VK Gupta R Pathania 2019 Efflux pump inhibitors for bacterial pathogens: From bench to bedside The Indian journal of medical research 149 2 129

    Google Scholar 

  56. MA Raza Z Kanwal A Rauf AN Sabri S Riaz S Naseem 2016 Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes Nanomaterials 6 4 74

    Google Scholar 

  57. L Wang C Hu L Shao 2017 The antimicrobial activity of nanoparticles: Present situation and prospects for the future International journal of nanomedicine 12 1227

    Google Scholar 

  58. J Talapko T Matijević M Juzbašić A Antolović-Požgain I Škrlec 2020 Antibacterial activity of silver and its application in dentistry, cardiology and dermatology Microorganisms 8 9 1400

    Google Scholar 

  59. S Makkar A Aggarwal S Pasricha I Kapur 2014 To evaluate the antibacterial properties of silver nano particle based irrigant as endodontic root canal irrigant Int J Dent Health Sci 1 4 485 492

    Google Scholar 

  60. Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D., Mendoza, E. G., Estrada, I., Toledano-Magaña, Y., ... & Susarrey-Arce, A. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific reports, 10(1), 1-11.

  61. Trastoy, R., Manso, T., Fernández-García, L., Blasco, L., Ambroa, A., Perez Del Molino, M. L., ... & Tomás, M. (2018). Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments. Clinical microbiology reviews, 31(4), e00023-18.

  62. M Ijaz M Zafar T Iqbal 2020 Green synthesis of silver nanoparticles by using various extracts: A review Inorganic and Nano-Metal Chemistry 51 5 744 755

    Google Scholar 

  63. Buszewski, B., Railean-Plugaru, V., Pomastowski, P., Rafińska, K., Szultka-Mlynska, M., Golinska, P., ... & Dahm, H. (2018). Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of microbiology, immunology and infection, 51(1), 45-54.

  64. YN Slavin J Asnis UO Häfeli H Bach 2017 Metal nanoparticles: Understanding the mechanisms behind antibacterial activity Journal of nanobiotechnology 15 1 1 20

    Google Scholar 

  65. McNeilly, O., Mann, R., Hamidian, M., & Gunawan, C. (2021). Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Frontiers in Microbiology, 12.

  66. DH Limoli CJ Jones DJ Wozniak 2015 Bacterial extracellular polysaccharides in biofilm formation and function Microbiology spectrum 3 3 3 3

    Google Scholar 

  67. R Roy M Tiwari G Donelli V Tiwari 2018 Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action Virulence 9 1 522 554

    Google Scholar 

  68. K Kalishwaralal S BarathManiKanth SRK Pandian V Deepak S Gurunathan 2010 Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis Colloids and Surfaces B: Biointerfaces 79 2 340 344

    Google Scholar 

  69. S Gurunathan JW Han DN Kwon JH Kim 2014 Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria Nanoscale research letters 9 1 1 17

    Google Scholar 

  70. E Park J Yi Y Kim K Choi K Park 2010 Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism Toxicol Vitr. 24 872 878

    Google Scholar 

  71. SR Goswami T Sahareen M Singh S Kumar 2015 Role of biogenic silver nanoparticles in disruption of cell–cell adhesion in Staphylococcus aureus and Escherichia coli biofilm Journal of Industrial and Engineering Chemistry 26 73 80

    Google Scholar 

  72. K Kannan D Radhika D Gnanasangeetha SK Lakkaboyana KK Sadasivuni K Gurushankar MM Hanafiah 2021 Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite Inorganic Chemistry Communications 125 108429

    Google Scholar 

  73. K Kannan D Radhika AS Nesaraj KK Sadasivuni LS Krishna 2020 Facile synthesis of NiO-CYSO nanocomposite for photocatalytic and antibacterial applications Inorganic Chemistry Communications 122 108307

    Google Scholar 

  74. K Kannan D Radhika MP Nikolova V Andal KK Sadasivuni LS Krishna 2020 Facile microwave-assisted synthesis of metal oxide CdO-CuO nanocomposite: photocatalytic and antimicrobial enhancing properties Optik 218 165112

    Google Scholar 

  75. K Kannan D Radhika KR Reddy AV Raghu KK Sadasivuni G Palani K Gurushankar 2021 Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications Nano Express 2 1 010014

    Google Scholar 

  76. TC Dakal A Kumar RS Majumdar V Yadav 2016 Mechanistic basis of antimicrobial actions of silver nanoparticles Frontiers in microbiology 7 1831

    Google Scholar 

  77. T Ishida 2018 Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages MOJ Toxicol 4 5 345 350

    Google Scholar 

  78. YH Hsueh KS Lin WJ Ke CT Hsieh CL Chiang DY Tzou ST Liu 2015 The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions PloS one 10 12 e0144306

    Google Scholar 

  79. K Karthik S Dhanuskodi C Gobinath S Prabukumar S Sivaramakrishnan 2019 Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance Journal of Photochemistry and Photobiology B: Biology 190 8 20

    Google Scholar 

  80. K Karthik S Dhanuskodi C Gobinath S Prabukumar S Sivaramakrishnan 2018 Nanostructured CdO-NiO composite for multifunctional applications Journal of Physics and Chemistry of Solids 112 106 118

    Google Scholar 

  81. O Długosz K Szostak A Staroń J Pulit-Prociak M Banach 2020 Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine Materials 13 2 279

    Google Scholar 

  82. Wang, J., Li, J., Guo, G., Wang, Q., Tang, J., Zhao, Y., ... & Zhang, X. (2016). Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Scientific reports, 6(1), 1-16.

  83. A Karuppaiah K Siram D Selvaraj M Ramasamy D Babu V Sankar 2020 Synergistic and enhanced anticancer effect of a facile surface modified non-cytotoxic silver nanoparticle conjugated with gemcitabine in metastatic breast cancer cells Materials Today Communications 23 100884

    Google Scholar 

  84. B Reidy A Haase A Luch KA Dawson I Lynch 2013 Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications Materials 6 6 2295 2350

    Google Scholar 

Download references

Acknowledgements

The University of Gour Banga is greatly acknowledged for providing me with the opportunity to work in the Department of Physiology and conduct biological research.

Author information

Authors and Affiliations

Authors

Contributions

Shib Shankar Dash, Sandeep Kumar Dash and Biplab Giri contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shib Shankar Dash, Jhimli Banerjee, Sovan Samanta and Sandeep Kumar Dash. The first draft of the manuscript was written by Jhimli Banerjee, Sovan Samanta and Shib Shankar Dash. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shib Shankar Dash or Sandeep Kumar Dash.

Ethics declarations

Research Involving Humans and Animals Statement

The study protocol was approved by Institutional Ethics committee (Human) of the University of Gour Banga, Malda, with approval no: UGB/IEC (Human)/004–19.

Informed Consent

EDTA-stabilized human blood samples were collected from six healthy participants after getting their verbal and written consent for this study.

Consent for Publication

Manuscript is approved by all authors for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2344 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S.S., Banerjee, J., Samanta, S. et al. Microwave-Assisted Fabrication of Silver Nanoparticles Utilizing Seed Extract of Areca catechu with Antioxidant Potency and Evaluation of Antibacterial Efficacy Against Multidrug Resistant Pathogenic Bacterial Strains. BioNanoSci. 12, 210–227 (2022). https://doi.org/10.1007/s12668-021-00927-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00927-1

Keywords

Navigation