Skip to main content
Log in

Fabrication, Characterization and In Vitro Antifungal Property Evaluation of Biocompatible Lignin-Stabilized Zinc Oxide Nanoparticles Against Selected Pathogenic Fungal Strains

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The present work aims to develop photoresponsive nanoparticle incorporated biomacromolecular aggregates with excellent optical and antimicrobial properties by the apt combination of zinc oxide nanoparticles with lignin, a macromolecular binding system. The biopolymer lignin-stabilized zinc oxide nanoparticles were fabricated by a cost-effective chemical precipitation route. The synthesized ZONPs and lignin-stabilized ZONPs were characterized by UV-visible, FT-IR and fluorescence spectrophotometric techniques, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses. The antifungal efficacy evaluation of the developed ZONP encapsulated lignin aggregates was done against selected pathogenic fungal strains. The study established the use of ZONPs encapsulated in water-soluble and biocompatible macro matrix lignin as an effective antifungal agent in order to improve the antimicrobial performance in biomedical and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jiang, H., Hu, J., Gu, F., & Li, C. (2008). Large-scaled, uniform, monodispersed ZnO colloidal microspheres. Journal of Physical Chemistry C, 112, 12138–12141.

  2. Guo, L., & Yang, S. (2000). Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chemistry of Materials, 12, 2268–2274.

  3. Beyenea, H. D., Werknehb, A. A., Bezabha, H. K., & Ambayec, T. G. (2017). Synthesis, paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18–23.

  4. Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. (2015). Green synthesis of metallic nanoparticles via biological entities. Journal of Materials, 8, 7278–7308.

  5. Venu Gopal, V. R., & Kamila, S. (2017). Effect of temperature on the morphology of ZnO nanoparticles: a comparative study. Applied Nanoscience, 7, 75–82.

  6. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77, 2325–2331.

  7. Sirelkhatim, A., Mahmud, S., Seeni, A., Mohamad Kaus, N. H., & Chuo, L. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7, 219–242.

  8. Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications, 2018, 1–18.

  9. Ruszkiewicz, J. A., Pinkas, A., Ferrer, B., Peres, T. V., Tsatsakis, A., & Aschner, M. (2017). Neurotoxic effect of active ingredients in sunscreen products, a contemporary review. Toxicology Reports, 4, 245–259.

  10. Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017). Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today, 22, 1825–1834.

  11. Xiong, H. M. (2013). ZnO nanoparticles applied to bioimaging and drug delivery.Advanced Materials, 25, 5329–5335.

  12. Perni, S., Prokopovich, P., Pratten, J., Parkin, I. P., & Wilson, M. (2011). Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochemical & Photobiological Sciences, 10, 712–720.

  13. Barui A K, Kotcherlakota R, Patra C R (2018). Biomedical applications of zinc oxide nanoparticles. In: Inorganic frameworks as smart nanomedicines. Elsevier Inc. 239–278.

  14. Zhang, Y., Nayak, T. R., Hong, H., & Cai, W. (2013). Biomedical applications of zinc oxide nanomaterials. Current Molecular Medicine, 13, 1633–1645.

  15. Chen, H., & Roco, M. (2009). Mapping nanotechnology innovations and knowledge, global and longitudinal patent and literature analysis series. New York: Springer.

    Google Scholar 

  16.  Ansari S A, Husain Q,  Qayyum S & Azam A (2011). Designing and surface modification of zinc oxide nanoparticles for biomedical applications.  Food and Chemical Toxicology 49, 2107–2115.

  17. Ruiz-Duenas, F. J., & Martinez, A. T. (2009). Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology, 2, 164–177.

  18. Yanga, W., Fortunatia, E., Dominicia, F., Giovanaleb, G., Mazzagliab, A., Balestrab, G. M., Kennya, J. M., & Puglia, D. (2016). Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. International Journal of Biological Macromolecules, 89, 360–368.

  19. Hu, S., & Hsieh, Y. L. (2016). Silver nanoparticle synthesis using lignin as reducing and capping agents: A kinetic and mechanistic study. International Journal of Biological Macromolecules, 82, 856–862.

  20. Chen H (2014). Biotechnology of Lignocellulose: Theory and Practice; Chemical Industry Press, Beijing and Springer Science C Business Media: Dordrecht.

  21. Hong, R., Pan, T., Qian, J., & Li, H. (2006). Synthesis and surface modification of ZnO nanoparticles. Chemical Engineering Journal, 119, 71–81.

  22. Mahmoudabadi, Z. A., & Nasery, M. K. G. (2009). Antifungal activity of shallot, Allium ascalonicum L. (Liliaceae), in vitro. Journal of Medicinal Plant Research: Planta Medica, 3, 450–453.

  23. Khan, S., Singhal, S., Mathur, T., Upadhyay, D. J., & Rattan, A. (2006). Antifungal susceptibility testing method for resource constrained laboratories. Indian Journal of Medical Microbiology, 24, 171–176.

  24. Alhawi, T., Rehana, M., Yorka, D., & Laia, X. (2015). Synthesis of zinc carbonate hydroxide nanoparticles using microemulsion process. Procedia Engineering, 102, 346–355.

  25. Chena, C., Yua, B., Liub, P., Liua, J. F., & Wang, L. (2011). Investigation of nano-sized ZnO particles fabricated by various synthesis routes. Journal of Ceramic Processing Research, 12, 420–425.

  26. Zhang, S., Fortier, H., & Dahn, J. R. (2004). Characterization of zinc carbonate hydroxides synthesized by precipitation from zinc acetate and potassium carbonate solutions. Materials Research Bulletin, 39, 1939–1948.

  27. Hu, S. H., Chen, Y. C., Hwang, C. C., Peng, C. H., & Gong, D. C. (2010). Analysis of growth parameters for hydrothermal synthesis of ZnO nanoparticles through a statistical experimental design method. Journal of Materials Science, 45, 5309–5317.

  28. Yin, M., Wu, C. K., Lou, Y., Burda, C., Koberstein, J. T., Zhu, Y., & Brien, S. (2005). Copper oxide nanocrystals. Journal of the American Chemical Society, 127, 9506–9511.

  29. Harun, K., Mansor, N., Ahmad, Z. A., & Mohamad, A. A. (2016). Electronic properties of ZnO nanoparticles synthesized by Sol-gel method: a LDA+U calculation and experimental study. Procedia Chemistry, 19, 125–132.

  30. Baxter, J. B., & Aydil, E. S. (2005). Nanowire-based dye-sensitized solar cells. Applied Physics Letters, 86, 53114.

  31. Yang, J. P., Meldrum, F. C., & Fendler, J. H. (1995). Epitaxial-growth of size-quantized cadmium sulfide crystals under arachidic acid monolayers. The Journal of Physical Chemistry, 99, 5500–5504.

  32. Jin, B., & Wang, D. (2012). Strong violet emission from zinc oxide dumbbell-like microrods and nanowires. Journal of Luminescence, 132, 1879–1884.

  33. Zhang, X. Y., Dai, J. Y., Lam, C. H., Wang, H. T., Webleyb, P. A., Li, Q., & Ong, H. C. (2007). Zinc/ZnO core–shell hexagonal nanodisk dendrites and their photoluminescence. Acta Materialia, 55, 5039–5044.

  34. Shastri, L., Qureshi, M. S., & Malik, M. M. (2014). Synthesis and luminescence properties of ZnO nanoparticles produced by the sol–gel method. Indian Journal of Pure & Applied Physics, 4, 119–125.

  35. Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., & Choi, H. J. (2002). Controlled growth of ZnO nanowires and their optical properties. Journal of Advanced Functional Materials, 12, 323–331.

  36. Singh, A. K., Viswanath, V., & Janu, V. C. (2009). Synthesis, effect of capping agents, structural, optical and photoluminescence properties of ZnO nanoparticles. Journal of Luminescence, 129, 874–878.

  37. Khun, K., Ibupoto, Z. H., AlSalhi, M. S., Atif, M., Ansari, A. A., & Willander, M. (2013). Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer. Materials, 6, 4361–4374.

  38. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., & Yang, P. (2003). Low-temperature wafer-sale production of ZnO nanowire arrays.  Angewandte Chemie, International Edition, 42, 3031–3034.

  39. Rafaie, H. A., Md Nor, R. & Samat, N. (2015). Synthesis and characterization of zinc oxide nanostructures using citrus aurantifolia extracts. Advanced Materials Research. 1109, 20–24.

  40. Salahuddin, N. A., El-Kemary, M., & Ibrahim, E. M. (2015). Synthesis and characterization of ZnO nanoparticles via precipitation method: effect of annealing temperature on particle size. Nanoscience and Nanotechnology, 5, 82–88.

  41. Wang, Y., Zhang, C., Bi, S., & Luo, G. (2010). Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor. Powder Technology, 202, 130–136.

  42. Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006). Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi C, 3, 3577–3581.

  43. Khan, T. M., Bibi, T., & Hussain, B. (2015). Synthesis and optical study of heat- treated ZnO nanopowder for optoelectronic applications. Bulletin of Materials Science, 38, 1851–1858.

  44. Wang, J. Z., Peres, M., Soares, J., Gorochov, O., Barradas, N. P., Alves, E., Lewis, J. E., Fortunato, E., Neves, A., & Monteiro, T. (2005). Annealing properties of ZnO films grown using diethyl zinc and tertiary butanol. Journal of Physics. Condensed Matter, 17, 1719.

  45. Horikawa, Y., Hirano, S., & Mihashi, A. (2019). Prediction of lignin contents from infrared spectroscopy: chemical digestion and lignin/biomass ratios of cryptomeria japonica. Applied Biochemistry and Biotechnology, 188, 1066–1076.

  46. Perez-Lopez, O. W., Farias, A. C., & Marcilio, N. R. (2005). The catalytic behaviour of zinc oxide prepared from various precursors and by different methods.  Materials Research Bulletin, 40, 2089–2099.

Download references

Funding

This work was supported by the University Grants Commission SWRO, Bangalore under the FDP scheme (No. FIP/12th Plan/KLMG028 TF- 04; 12.04.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Kuriakose.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, L.M., Kuriakose, S. & Thomas, S. Fabrication, Characterization and In Vitro Antifungal Property Evaluation of Biocompatible Lignin-Stabilized Zinc Oxide Nanoparticles Against Selected Pathogenic Fungal Strains. BioNanoSci. 10, 583–596 (2020). https://doi.org/10.1007/s12668-020-00748-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00748-8

Keywords

Navigation