Skip to main content
Log in

Biosynthesis of Highly Stable Fluorescent Selenium Nanoparticles and the Evaluation of Their Photocatalytic Degradation of Dye

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The aquatic environment is contaminated with methylene blue (MB) due to increasing industrial activity which causes health hazard for both humans and animals. In the present study, we report a cost-effective, environmentally friendly, rapid green synthesis method for fluorescent selenium nanoparticles (SeNPs) using Ficus benghalensis leaf extract. The biogenic SeNPs were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), dynamic light scattering (DLS), and photoluminescence spectroscopy (PL). The size distribution profile of SeNPs was found to be 45–95 nm, and the average size was found at 64.03 nm by DLS and SEM study. X-ray diffraction (XRD) of the sample suggests that the synthesized selenium is polycrystalline in nature. As-synthesized SeNPs were used for the photocatalytic degradation of MB in the aquatic environment. The degradation reached 57.63% in 40 min with a rate constant of 0.02162 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El-Sharkawy, E. A., Soliman, A. Y., & Al-Amer, K. M. (2007). Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation. Journal of Colloid and Interface Science, 310(2), 498–508. https://doi.org/10.1016/j.jcis.2007.02.013.

    Article  Google Scholar 

  2. Obata, H., & Koizumi, M. (1957). Photochemical reactions between methylene blue and tri-, di- and monomethylamine. II. Bulletin of the Chemical Society of Japan, 30(2), 142–147. https://doi.org/10.1246/bcsj.30.142.

    Article  Google Scholar 

  3. Obata, H., Kogasaka, K., & Koizumi, M. (1959). Photochemical reactions between methylene blue and tri-, di- and monomethylamine. III. The behavior of methylene blue in the presence of oxygen. Bulletin of the Chemical Society of Japan, 32(2), 125–132. https://doi.org/10.1246/bcsj.32.125.

    Article  Google Scholar 

  4. Murty, B. S., Shankar, P., Raj, B., Rath, B. B., & Murday, J. (2013). Textbook of nanoscience and nanotechnology. Berlin: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28030-6.

    Book  Google Scholar 

  5. Li, J., & Zhang, J. Z. (2009). Optical properties and applications of hybrid semiconductor nanomaterials. Coordination Chemistry Reviews, 253(23–24), 3015–3041. https://doi.org/10.1016/j.ccr.2009.07.017.

    Article  Google Scholar 

  6. Agarwal, M., Singh Bhadwal, A., Pratap Singh, M., Kumar, N., Shrivastav, A., Zafar, F., et al. (2016). Catalytic degradation of methylene blue by biosynthesised copper nanoflowers using F. benghalensis leaf extract. IET Nanobiotechnology, 10(5), 321–325. https://doi.org/10.1049/iet-nbt.2015.0098.

    Article  Google Scholar 

  7. Tripathi, R. M., Shrivastav, B. R., & Shrivastav, A. (2018). Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum. IET Nanobiotechnology, 12(4), 509–513. https://doi.org/10.1049/iet-nbt.2017.01058.

    Article  Google Scholar 

  8. Lin, H.-P., Chen, C.-C., Lee, W. W., Lai, Y.-Y., Chen, J.-Y., Chen, Y.-Q., & Fu, J.-Y. (2016). Synthesis of a SrFeO3−x/g-C3N4 heterojunction with improved visible-light photocatalytic activities in chloramphenicol and crystal violet degradation. RSC Advances, 6(3), 2323–2336. https://doi.org/10.1039/C5RA21339H.

    Article  Google Scholar 

  9. Yang, C.-T., Lee, W. W., Lin, H.-P., Dai, Y.-M., Chi, H.-T., & Chen, C.-C. (2016). A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: synthesis, characterization, photocatalytic activity, and mechanism. RSC Advances, 6(47), 40664–40675. https://doi.org/10.1039/C6RA02299E.

    Article  Google Scholar 

  10. Tripathi, R. M., Kumar, N., Singh Bhadwal, A., Gupta, R. K., Shrivastav, B. R., & Shrivastav, A. (2015). Facile and rapid biomimetic approach for synthesis of HAp nanofibers and evaluation of their photocatalytic activity. Materials Letters, 140, 64–67. https://doi.org/10.1016/j.matlet.2014.10.149.

    Article  Google Scholar 

  11. Mehrotra, N., Tripathi, R. M., Zafar, F., & Singh, M. P. (2017). Catalytic degradation of Dichlorvos using biosynthesized zero valent iron nanoparticles. IEEE Transactions on Nanobioscience, 16(4), 280–286. https://doi.org/10.1109/TNB.2017.2700232.

    Article  Google Scholar 

  12. Chen, C.-C., Yang, C.-T., Chung, W.-H., Chang, J.-L., & Lin, W.-Y. (2017). Synthesis and characterization of Bi4Si3O12, Bi2SiO5, and Bi12SiO20 by controlled hydrothermal method and their photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 78, 157–167. https://doi.org/10.1016/j.jtice.2017.05.021.

    Article  Google Scholar 

  13. Lee, W. W., Lu, C.-S., Chuang, C.-W., Chen, Y.-J., Fu, J.-Y., Siao, C.-W., & Chen, C.-C. (2015). Synthesis of bismuth oxyiodides and their composites: characterization, photocatalytic activity, and degradation mechanisms. RSC Advances, 5(30), 23450–23463. https://doi.org/10.1039/C4RA15072D.

    Article  Google Scholar 

  14. Lee, Y.-H., Dai, Y.-M., Fu, J.-Y., & Chen, C.-C. (2017). A series of bismuth-oxychloride/bismuth-oxyiodide/graphene-oxide nanocomposites: synthesis, characterization, and photcatalytic activity and mechanism. Molecular Catalysis, 432, 196–209. https://doi.org/10.1016/j.mcat.2017.01.002.

    Article  Google Scholar 

  15. Jiang, Y.-R., Lee, W. W., Chen, K.-T., Wang, M.-C., Chang, K.-H., & Chen, C.-C. (2014). Hydrothermal synthesis of β-ZnMoO4 crystals and their photocatalytic degradation of Victoria Blue R and phenol. Journal of the Taiwan Institute of Chemical Engineers, 45(1), 207–218. https://doi.org/10.1016/j.jtice.2013.05.007.

    Article  Google Scholar 

  16. Huang, S.-T., Jiang, Y.-R., Chou, S.-Y., Dai, Y.-M., & Chen, C.-C. (2014). Synthesis, characterization, photocatalytic activity of visible-light-responsive photocatalysts BiOxCly/BiOmBrn by controlled hydrothermal method. Journal of Molecular Catalysis A: Chemical, 391, 105–120. https://doi.org/10.1016/j.molcata.2014.04.020.

    Article  Google Scholar 

  17. Lin, H.-P., Lee, W. W., Huang, S.-T., Chen, L.-W., Yeh, T.-W., Fu, J.-Y., & Chen, C.-C. (2016). Controlled hydrothermal synthesis of PbBiO2Br/BiOBr heterojunction with enhanced visible-driven-light photocatalytic activities. Journal of Molecular Catalysis A: Chemical, 417, 168–183. https://doi.org/10.1016/j.molcata.2016.03.021.

    Article  Google Scholar 

  18. Mahajan, R., Bhadwal, A. S., Kumar, N., Madhusudanan, M., Pudake, R. N., & Tripathi, R. M. (2017). Green synthesis of highly stable carbon nanodots and their photocatalytic performance. IET Nanobiotechnology, 11(4), 360–364. https://doi.org/10.1049/iet-nbt.2016.0025.

    Article  Google Scholar 

  19. Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., et al. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19(7), 075103. https://doi.org/10.1088/0957-4484/19/7/075103.

    Article  Google Scholar 

  20. Tripathi, R. M., Kumar, N., Shrivastav, A., Singh, P., & Shrivastav, B. R. (2013). Catalytic activity of biogenic silver nanoparticles synthesized by Ficus panda leaf extract. Journal of Molecular Catalysis B: Enzymatic, 96, 75–80. https://doi.org/10.1016/j.molcatb.2013.06.018.

    Article  Google Scholar 

  21. Tripathi, R. M., & Chung, S. J. (2018). Biogenic nanomaterials: synthesis, characterization, growth mechanism, and biomedical applications. Journal of Microbiological Methods, 157, 65–80. https://doi.org/10.1016/j.mimet.2018.12.008.

    Article  Google Scholar 

  22. Singh, P., Gupta, R. K., Shrivastav, A., Bhadwal, A. S., Shrivastav, B. R., & Tripathi, R. M. (2015). Fungal biomolecules assisted biosynthesis of Au–Ag alloy nanoparticles and evaluation of their catalytic property. IET Nanobiotechnology, 9(4), 178–183. https://doi.org/10.1049/iet-nbt.2014.0043.

    Article  Google Scholar 

  23. Tidke, P. R., Gupta, I., Gade, A. K., & Rai, M. (2014). Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis. IEEE Transactions on Nanobioscience, 13(4), 397–402. https://doi.org/10.1109/TNB.2014.2347803.

    Article  Google Scholar 

  24. Hu, W., Chen, S., Zhou, B., & Wang, H. (2010). Facile synthesis of ZnO nanoparticles based on bacterial cellulose. Materials Science and Engineering: B, 170(1–3), 88–92. https://doi.org/10.1016/j.mseb.2010.02.034.

    Article  Google Scholar 

  25. Tripathi, R. M., Bhadwal, A. S., Singh, P., Shrivastav, A., Singh, M. P., & Shrivastav, B. R. (2014). Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus licheniformis. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(2), 025006. https://doi.org/10.1088/2043-6262/5/2/025006.

    Article  Google Scholar 

  26. Dehnad, A., Hamedi, J., Derakhshan-Khadivi, F., & Abusov, R. (2015). Green synthesis of gold nanoparticles by a metal resistant Arthrobacter nitroguajacolicus isolated from gold mine. IEEE Transactions on Nanobioscience, 14(4), 393–396. https://doi.org/10.1109/TNB.2014.2377232.

    Article  Google Scholar 

  27. Mandeh, M., Omidi, M., & Rahaie, M. (2012). In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research, 150(1–3), 376–380. https://doi.org/10.1007/s12011-012-9480-z.

    Article  Google Scholar 

  28. Rayman, M. P. (2000). The importance of selenium to human health. The Lancet, 356(9225), 233–241. https://doi.org/10.1016/S0140-6736(00)02490-9.

    Article  Google Scholar 

  29. Smith, K. K. (1981). Photoluminescence of semiconductor materials. Thin Solid Films, 84(2), 171–182. https://doi.org/10.1016/0040-6090(81)90465-X.

    Article  Google Scholar 

  30. Tripathi, R. M., Shrivastav, A., & Shrivastav, B. R. (2012). Biofabrication of gold nanoparticles using leaf extract of Ficus benghalensis and their characterization. International Journal of Pharma and Bio Sciences, 3(3), 551–558.

    Google Scholar 

  31. Tripathi, R. M., Rao, R. P., & Tsuzuki, T. (2018). Green synthesis of sulfur nanoparticles and evaluation of their catalytic detoxification of hexavalent chromium in water. RSC Advances, 8(63), 36345–36352. https://doi.org/10.1039/C8RA07845A.

    Article  Google Scholar 

  32. Tauc, J. (1974). Optical properties of amorphous semiconductors. In J. Tauc (Ed.), Amorphous and liquid semiconductors (pp. 159–220). Boston: Springer US. https://doi.org/10.1007/978-1-4615-8705-7_4.

    Chapter  Google Scholar 

  33. Mehta, S. K., Chaudhary, S., Kumar, S., Bhasin, K. K., Torigoe, K., Sakai, H., & Abe, M. (2008). Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions. Nanotechnology, 19(29), 295601. https://doi.org/10.1088/0957-4484/19/29/295601.

    Article  Google Scholar 

  34. Bhatnagar, A. K., Reddy, K. V., & Srivastava, V. (1985). Optical energy gap of amorphous selenium: effect of annealing. Journal of Physics D: Applied Physics, 18(9), L149–L153. https://doi.org/10.1088/0022-3727/18/9/001.

    Article  Google Scholar 

  35. Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical Society Reviews, 35(7), 583. https://doi.org/10.1039/b502142c.

    Article  Google Scholar 

  36. Žūkienė, R., & Snitka, V. (2015). Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro. Colloids and Surfaces B: Biointerfaces, 135, 316–323. https://doi.org/10.1016/j.colsurfb.2015.07.054.

    Article  Google Scholar 

  37. Garcia-Gutierrez, D. F., Hernandez-Casillas, L. P., Cappellari, M. V., Fungo, F., Martínez-Guerra, E., & García-Gutiérrez, D. I. (2017). Influence of the capping ligand on the band gap and electronic levels of PbS nanoparticles through surface atomistic arrangement determination. ACS Omega, 3(1), 393–405. https://doi.org/10.1021/acsomega.7b01451.

    Article  Google Scholar 

  38. Alagesan, V., & Venugopal, S. (2019). Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoScience, 9(1), 105–116. https://doi.org/10.1007/s12668-018-0566-8.

    Article  Google Scholar 

  39. Chandramohan, S., Sundar, K., & Muthukumaran, A. (2019). Hollow selenium nanoparticles from potato extract and investigation of its biological properties and developmental toxicity in zebrafish embryos. IET Nanobiotechnology, 13(3), 275–281. https://doi.org/10.1049/iet-nbt.2018.5228.

    Article  Google Scholar 

  40. Clifton, J., & Leikin, J. B. (2003). Methylene blue. American Journal of Therapeutics, 10(4), 289–291.

    Article  Google Scholar 

  41. Mallick, K., Witcomb, M., & Scurrell, M. (2006). Silver nanoparticle catalysed redox reaction: an electron relay effect. Materials Chemistry and Physics, 97(2–3), 283–287. doi:https://doi.org/10.1016/j.matchemphys.2005.08.011.

  42. Gupta, N., Singh, H. P., & Sharma, R. K. (2011). Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. Journal of Molecular Catalysis A: Chemical, 335(1–2), 248–252. https://doi.org/10.1016/j.molcata.2010.12.001.

    Article  Google Scholar 

  43. Jiang, Y.-R., Chou, S.-Y., Chang, J.-L., Huang, S.-T., Lin, H.-P., & Chen, C.-C. (2015). Hydrothermal synthesis of bismuth oxybromide–bismuth oxyiodide composites with high visible light photocatalytic performance for the degradation of CV and phenol. RSC Advances, 5(39), 30851–30860. https://doi.org/10.1039/C5RA01702E.

    Article  Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagjiwan Mittal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Humans and Animals Statement

None

Informed Consent

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R.M., Hameed, P., Rao, R.P. et al. Biosynthesis of Highly Stable Fluorescent Selenium Nanoparticles and the Evaluation of Their Photocatalytic Degradation of Dye. BioNanoSci. 10, 389–396 (2020). https://doi.org/10.1007/s12668-020-00718-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00718-0

Keywords

Navigation