Skip to main content
Log in

Mechanical Properties of Chitin–Protein Interfaces: A Molecular Dynamics Study

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The mechanical behaviors of chitin, proteins, and their interfaces are important factors in defining the overall mechanical properties of “chitin-based” biological materials, including lobster shells, squid beaks, and spider’s fangs. Additional effects arise from their solvent environments such as water and inorganic ions. In this paper, we explored the molecular-level mechanics of the chitin–protein interface by performing molecular dynamics simulations. Model proteins including α-helices and β-sheets were investigated, showing secondary structure-dependent chitin-binding behaviors through hydrogen bonds (H-bonds). The results indicate that the terminals of proteins anchor them on the chitin substrate through H-bonds and contribute to the interfacial strength. Furthermore, it is shown that the presence of water at the interface reduces its strength by weakening the H-bonds network (by approximately two thirds for the α-helix in our model). The results and conclusion from this simple model for the chitin–protein interface are expected to shed some light on the complete exploration of multiscale mechanics in biological materials with such type of interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sachs, C., Fabritius, H., & Raabe, D. (2008). Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. Journal of Structural Biology, 161(2), 120–132.

    Article  Google Scholar 

  2. Fabritius, H.-O., Sachs, C., Triguero, P. R., & Roobe, D. (2009). Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster Homarus americanus. Advanced Materials, 21(4), 391–400.

    Article  Google Scholar 

  3. Nikolov, S., Petrov, M., Lymperakis, L., Friak, M., Sachs, C., Fabritius, H.-O., et al. (2010). Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: The example of lobster cuticle. Advanced Materials, 22(4), 519–526.

    Article  Google Scholar 

  4. Politi, Y., Priewasser, M., Pippel, E., Zaslansky, P., Hartmann, J., Siegel, S., et al. (2012). A spider’s fang: How to design an injection needle using chitin-based composite material. Advanced Functional Materials, 22(12), 2519–2528.

    Article  Google Scholar 

  5. Miserez, A., Schneberk, T., Sun, C., Zok, F. W., & Waite, J. H. (2008). The transition from stiff to compliant materials in squid beaks. Science, 319(5871), 1816–1819.

    Article  Google Scholar 

  6. Gordon, L. M., & Joester, D. (2011). Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature, 469(7329), 194–197.

    Article  Google Scholar 

  7. Miserez, A., Rubin, D., & Waite, J. H. (2010). Cross-linking chemistry of squid beak. Journal of Biological Chemistry, 285(49), 38115–38124.

    Article  Google Scholar 

  8. Atkins, E. (1985). Conformations in polysaccharides and complex carbohydrates. Journal of Biosciences, 8(1–2), 375–387.

    Article  Google Scholar 

  9. Vincent, J. F. V., & Wegst, U. G. K. (2004). Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 33(3), 187–199.

    Article  Google Scholar 

  10. Qin, Z., Gautieri, A., Nair, A. K., Inbar, H., & Buehler, M. J. (2012). Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen–hydroxyapatite interface. Langmuir, 28(4), 1982–1992.

    Article  Google Scholar 

  11. Qin, Z., & Buehler, M. J. (2012). Molecular mechanics of dihydroxyphenylalanine at a silica interface. Applied Physics Letters, 101(8), 083702.

    Article  Google Scholar 

  12. Liu, Y., Xie, B., Zhang, Z., Zheng, Q., & Xu, Z. (2012). Mechanical properties of graphene papers. Journal of the Mechanics and Physics of Solids, 60(4), 591–605.

    Article  MathSciNet  MATH  Google Scholar 

  13. Zeng, J.-B., He, Y.-S., Li, S.-L., & Wang, Y.-Z. (2012). Chitin whiskers: An overview. Biomacromolecules, 13(1), 1–11.

    Article  Google Scholar 

  14. Jayakumar, R., Chennazhi, K. P., Srinivasan, S., Nair, S. V., Furuike, T., & Tamura, H. (2011). Chitin scaffolds in tissue engineering. International Journal of Molecular Sciences, 12(3), 1876–1887.

    Article  Google Scholar 

  15. Nova, A., Keten, S., Pugno, N. M., Redaelli, A., & Buehler, M. J. (2010). Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Letters, 10(7), 2626–2634.

    Article  Google Scholar 

  16. Keten, S., Xu, Z., Ihle, B., & Buehler, M. J. (2010). Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nature Materials, 9(4), 359–367.

    Article  Google Scholar 

  17. Guvench, O., Greene, S. N., Kamath, G., Brady, J. W., Venable, R. M., Pastor, R. W., et al. (2008). Additive empirical force field for hexopyranose monosaccharides. Journal of Computational Chemistry, 29(15), 2543–2564.

    Article  Google Scholar 

  18. Guvench, O., Hatcher, E., Venable, R. M., Pastor, R. W., & MacKerell, A. D., Jr. (2009). CHARMM: Additive all-atom force field for glycosidic linkages between hexopyranoses. Journal of Chemical Theory and Computation, 5(9), 2353–2370.

    Article  Google Scholar 

  19. Guvench, O., Mallajosyula, S. S., Raman, E. P., Hatcher, E., Vanommeslaeghe, K., Foster, T. J., et al. (2011). CHARMM: Additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling. Journal of Chemical Theory and Computation, 7(10), 3162–3180.

    Article  Google Scholar 

  20. MacKerell, A. D., Jr., Bashford, D., Bellott, M., Dunbrack, R. L., Jr., Evanseck, J., Field, M., et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18), 3586–3616.

    Article  Google Scholar 

  21. Sikorski, P., Hori, R., & Wada, M. (2009). Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromolecules, 10(5), 1100–1105.

    Article  Google Scholar 

  22. Park, S., Khalili-Araghi, F., Tajkhorshid, E., & Schulten, K. (2003). Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. Journal of Chemical Physics, 119(6), 3559–3566.

    Article  Google Scholar 

  23. Nishiyama, Y., Noishiki, Y., & Wada, M. (2011). X-ray structure of anhydrous beta-chitin at 1 angstrom resolution. Macromolecules, 44(4), 950–957.

    Article  Google Scholar 

  24. Beckham, G. T., & Crowley, M. F. (2011). Examination of the alpha-chitin structure and decrystallization thermodynamics at the nanoscale. Journal of Physical Chemistry B, 115(15), 4516–4522.

    Article  Google Scholar 

  25. Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1), 1–19.

    Article  MATH  Google Scholar 

  26. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935.

    Article  Google Scholar 

  27. Ruiz, L., & Keten, S. (2011). Atomistic modeling and mechanics of self-assembled organic nanotubes. International Journal of Applied Mechanics, 3(4), 667–684.

    Article  Google Scholar 

  28. Walton, E. B., Lee, S., & Van Vliet, K. J. (2008). Extending Bell’s model: How force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophysical Journal, 94(7), 2621–2630.

    Article  Google Scholar 

  29. Nishino, T., Matsui, R., & Nakamae, K. (1999). Elastic modulus of the crystalline regions of chitin and chitosan. Journal of Polymer Science Part B-Polymer Physics, 37(11), 1191–1196.

    Article  Google Scholar 

  30. Ackbarow, T., Chen, X., Keten, S., & Buehler, M. J. (2007). Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains. PNAS, 104(42), 16410–16415.

    Article  Google Scholar 

  31. Compton, O. C., Cranford, S. W., Putz, K. W., An, Z., Brinson, L. C., Buehler, M. J., & Nguyen, S. T. (2012). Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano, 6(3), 2008–2019.

    Article  Google Scholar 

  32. Keten, S., & Buehler, M. J. (2008). Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Letters, 8(2), 743–748.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China through grant nos. 11222217, 11002079, and 31270989, Tsinghua University Initiative Scientific Research Program through grant nos. 2011Z02174 and 20121087991, and the Tsinghua National Laboratory for Information Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, K., Feng, X. & Xu, Z. Mechanical Properties of Chitin–Protein Interfaces: A Molecular Dynamics Study. BioNanoSci. 3, 312–320 (2013). https://doi.org/10.1007/s12668-013-0097-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-013-0097-2

Keywords

Navigation